Journal of Scientific Computing

, Volume 70, Issue 3, pp 1262–1289 | Cite as

Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

  • Matthias Sonntag
  • Claus-Dieter Munz


We present a shock capturing procedure for high order Discontinuous Galerkin methods, by which shock regions are refined in sub-cells and treated by finite volume techniques. Hence, our approach combines the good properties of the Discontinuous Galerkin method in smooth parts of the flow with the perfect properties of a total variation diminishing finite volume method for resolving shocks without spurious oscillations. Due to the sub-cell approach the interior resolution on the Discontinuous Galerkin grid cell is nearly preserved and the number of degrees of freedom remains the same. This structure allows the interpretation of the data either as DG solution or as finite volume solution on the subgrid. In this paper we explain the efficient implementation of this coupled method on massively parallel computers and show some numerical results.


Shock capturing Finite volume Sub-cells Discontinuous Galerkin 


  1. 1.
    Altmann, C., Taube, A., Gassner, G., Lörcher, F., Munz, C.D.: Shock detection and limiting strategies for high order discontinuous Galerkin schemes. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 1053–1058. Springer, Berlin (2009)CrossRefGoogle Scholar
  2. 2.
    Atak, M., Beck, A., Bolemann, T., Flad, D., Frank, H., Munz, C.D.: High Fidelity Scale-Resolving Computational Fluid Dynamics Using the High Order Discontinuous Galerkin Spectral Element Method, pp. 511–530. Springer International Publishing, Cham (2016)Google Scholar
  3. 3.
    Atak, M., Larsson, J., Munz, C.D.: The Multicore Challenge: Petascale DNS of a Spatially-Developing Supersonic Turbulent Boundary Layer Up to High Reynolds Numbers Using DGSEM. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S. (eds.) Sustained Simulation Performance 2015, pp. 171–183. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  4. 4.
    Balsara, D.S., Altmann, C., Munz, C.D., Dumbser, M.: A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226(1), 586–620 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. Journal of Computational Physics 229(5), 1810–1827 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation Laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cockburn, B., Shu, C.W., Lin, S.: The Runge–Kutta Local Projection P1-discontinuous-Galerkin Finite Element Method for Scalar Conservation Laws. Institute for Mathematics and its Applications, Minneapolis (1989)zbMATHGoogle Scholar
  16. 16.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-Eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). “High Fidelity Flow Simulations” Onera Scientific DayMathSciNetCrossRefGoogle Scholar
  20. 20.
    Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (1981)Google Scholar
  22. 22.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press (1974)Google Scholar
  25. 25.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36(1), 9–15 (1971)CrossRefzbMATHGoogle Scholar
  27. 27.
    Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)Google Scholar
  28. 28.
    Premasuthan, S., Liang, C., Jameson, A.: Computation of flows with shocks using the spectral difference method with artificial viscosity, I: basic formulation and application. Comput. Fluids 98, 111–121 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rault, A., Chiavassa, G., Donat, R.: Shock–Vortex interactions at high mach numbers. J. Sci. Comput. 19(1–3), 347–371 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR–73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  32. 32.
    Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337–365 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Roe, P.L.: Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63(2), 458–476 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sabat, M., Larat, A., Vié, A., Massot, M.: Comparison of realizable schemes for the Eulerian simulation of disperse phase flows. In: J. Fuhrmann, M. Ohlberger, C. Rohde (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 935–943. Springer International Publishing (2014)Google Scholar
  35. 35.
    Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 83(1), 32–78 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (1999)CrossRefzbMATHGoogle Scholar
  39. 39.
    Toro, E.F., Clarke, J.F.: Numerical Methods for Wave Propagation. Springer Publishing Company Incorporated, New York (2011)Google Scholar
  40. 40.
    van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)CrossRefzbMATHGoogle Scholar
  41. 41.
    VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Gas DynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations