Journal of Scientific Computing

, Volume 69, Issue 2, pp 764–804 | Cite as

Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model

  • Marc O. Delchini
  • Jean C. Ragusa
  • Ray A. Berry
Article

Abstract

In this paper, a viscous regularization is derived for the non-equilibrium seven-equation two-phase flow model (SEM). This regularization, based on an entropy condition, is an artificial viscosity stabilization technique that selects a weak solution satisfying an entropy-minimum principle. The viscous regularization ensures nonnegativity of the entropy residual, is consistent with the viscous regularization for Euler equations when one phase disappears, does not depend on the spatial discretization scheme chosen, and is compatible with the generalized Harten entropies. We investigate the behavior of the proposed viscous regularization for two important limit-cases. First, a Chapman–Enskog expansion is performed for the regularized SEM and we show that the five-equation flow model of Kapila is recovered with a well-scaled viscous regularization. Second, a low-Mach asymptotic limit of the regularized seven-equation flow model is carried out whereby the scaling of the non-dimensional numbers associated with the viscous terms is determined such that an incompressible two-phase flow model, with a properly scaled regularization, is recovered. Both limit-cases are illustrated with one-dimensional numerical results, including two-phase flow shock tube tests and steady-state two-phase flows in converging-diverging nozzles. A continuous finite element discretization is employed for all numerical simulations.

Keywords

Seven-equation model Two-phase flow model Viscous regularization Artificial viscosity method Five-equation model of Kapila Low-Mach asymptotics 

References

  1. 1.
    Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alleges, F., Merlet, B.: Approximate shock curves for non-conservative hyperbolic systems in one space dimension. J. Hyperbolic Differ. Equ. 1(4), 769–788 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ambroso, A., Chalons, C., Raviart, P.A.: A godunov-type method for the seven-equation model of compressible multiphase mixtures. Comput. Fluids 54, 67–91 (2012)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)MATHCrossRefGoogle Scholar
  5. 5.
    Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)MATHCrossRefGoogle Scholar
  6. 6.
    Berry, R., Saurel, R., LeMetayer, O.: The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross section. Nucl. Eng. Des. 240(11), 3797–3818 (2010)CrossRefGoogle Scholar
  7. 7.
    Berry, R.A.: Notes on well-posed, ensemble averaged conservation equations for multiphase, multi-component, and multi-material flows. Tech. rep., Idaho National Laboratory, Idaho Falls, ID (2003, 2005)Google Scholar
  8. 8.
    Berry, R.A., Saurel, R., Petitpas, F.: A simple and efficient diffuse interface method for compressible two-phase flows. International Conference on Mathematics, Computational Methods and Reactor Physics (M&C 2009) (2009)Google Scholar
  9. 9.
    Berry, R.A., Williamson, R.L.: A Multiphase Mixture Model for the Shock Induced Consolidation of Metal Powders in ’Shock Waves in Condensed Matter’. Plenum, New York (1985)Google Scholar
  10. 10.
    Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161(1), 223–342 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Coquel, F., Herard, J.M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12(3), 593–600 (2014)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dal, M., LeFloch, G., Murat, P.: Definition and weak stability of a non-conservative product. J. Math. Pures Appl. 74(6), 483–548 (1995)MathSciNetMATHGoogle Scholar
  13. 13.
    Delchini, M.: Extension of the entropy viscosity method to multi-d Euler equations and the seven-equation two-phase model. Tech. rep., Texas A & M University, USA (2014)Google Scholar
  14. 14.
    Delchini, M., Ragusa, J., Berry, R.: Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows. Comput. Fluids 118, 225–244 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dellacherie, S.: Relaxation schemes for the multicomponent Euler system. ESAIM Math. Modell. Numer. Anal. 37(6), 909–936 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  17. 17.
    Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)MATHCrossRefGoogle Scholar
  18. 18.
    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  19. 19.
    Gallouet, T., Herard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure model. Math. Models Methods Appl. Sci. 14(5), 663–700 (2004)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gaston, D., Newsman, C., Hansen, G., Lebrun-Grandié, D.: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)CrossRefGoogle Scholar
  21. 21.
    Guermond, J.L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus Mathematique 346(13–14), 801–806 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Guermond, J.L., Pasquetti, R.: Entropy viscosity method for high-order approximations of conservation laws. Lecture Notes Comput. Sci. Eng. 76, 411–418 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Guermond, J.L., Pasquetti, R.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Guillard, H., Murrone, A.: A five equation reduced model for compressible two-phase flow problems. J. Comput. Phys. 202(2), 664–698 (2003)MathSciNetMATHGoogle Scholar
  26. 26.
    Guillard, H., Viozat, C.: On the behavior of upwind schemes in the low-Mach number limit. Comput. Fluids 28(1), 63–86 (1999)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Harten, A., Lax, P.D., Levermore, C.D., Morokoff, W.J.: Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35(6), 2117–2127 (1998)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Herard, J.M., Hurisse, O.: A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn. 19(7), 475–482 (2005)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modelling of deflagration-to-detonation transition in granular materials. Phys. Fluids 13, 3002–3024 (2001)MATHCrossRefGoogle Scholar
  30. 30.
    Lapidus, A.: A detached shock calculation by second order finite differences. J. Comput. Phys. 2(2), 154–177 (1967)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Lax, P.D.: Hyperbolic Systems of Conservation Laws and The Mathematical Theory of Shock Waves. New York University, New York (1973)MATHCrossRefGoogle Scholar
  32. 32.
    LeFloch, G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differ. Eq. 13(6), 669–727 (1988)MathSciNetCrossRefGoogle Scholar
  33. 33.
    LeFloch, G.: Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Forms. Tech. rep, Institute for Mathematics and its Applications, Minneapolis, MN (1989)Google Scholar
  34. 34.
    LeFloch, G., Liu, T.P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5(5), 261–280 (1993)MathSciNetGoogle Scholar
  35. 35.
    Lellis, C.D., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62(4), 687–700 (2004)MathSciNetMATHGoogle Scholar
  36. 36.
    LeMartelot, S., Saurel, R., Le Métayer, O.: Steady one-dimensional nozzle flow solutions of liquidgas mixtures. J. Fluid Mech. 737, 146–175 (2013)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    LeMetayer, O., Massoni, J., Saurel, R.: Elaborating equation of state for a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43, 265–276 (2004)CrossRefGoogle Scholar
  38. 38.
    Lohner, R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. Wiley, Oxford (2008)MATHCrossRefGoogle Scholar
  39. 39.
    Passman, S.L., Nunziato, J.W., Walsh, E.K.: A Theory of Multiphase Mixtures Appendix 5C of Rational Thermodynamics, 2nd ed. (pp. 286–325), Springer, New York (1984)Google Scholar
  40. 40.
    Perthane, B., Shu, C.W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Qiang, L., Jian-Hu, F., Ti-min, C., Chun-bo, H.: Difference scheme for two-phase flow. Appl. Math. Mech. 25(5), 536–545 (2004)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Saurel, R., Le Métayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)MATHCrossRefGoogle Scholar
  44. 44.
    Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Stadtke, H.: Gasdynamic Aspects of Two-Phase Flow. Wiley-VCH, Weinheim (2006)CrossRefGoogle Scholar
  46. 46.
    Tadmor, E.: A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2(35), 211–219 (1986)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Turkel, E.: Preconditioned techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equations at low-Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2010)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. J. Comput. Phys. 253, 479–490 (2013)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations