Journal of Scientific Computing

, Volume 69, Issue 2, pp 736–763 | Cite as

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations

  • Dong Lu
  • Yong-Tao ZhangEmail author


Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Krylov subspace approximations on dealing with high dimensional problems. It was shown that the Krylov integration factor methods have linear computational complexity and are especially efficient for high dimensional convection–diffusion problems with anisotropic diffusions. In this paper, we combine the Krylov integration factor methods with sparse grid combination techniques and solve high spatial dimension convection–diffusion equations such as Fokker–Planck equations on sparse grids. Numerical examples are presented to show that significant computational times are saved by applying the Krylov integration factor methods on sparse grids.


Implicit integration factor methods Sparse grids Krylov subspace approximation High spatial dimensions Convection–diffusion equations 


  1. 1.
    Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Briggs, W.L., Henson, V.E., and McCormick, S.F.: A multigrid tutorial. SIAM, (2000)Google Scholar
  3. 3.
    Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348, 810–820 (1914)CrossRefGoogle Scholar
  7. 7.
    Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992)Google Scholar
  9. 9.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)zbMATHGoogle Scholar
  10. 10.
    Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51(4), 747–764 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection–diffusion-reaction equations. J. Comput. Phys. 311, 22–44 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667–1687 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection–diffusion problems. J. Comput. Appl. Math. submitted, (2015)Google Scholar
  20. 20.
    Maday, Y., Patera, A.T., Ronquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Planck, M.: Sitzber. Preuss. Akad. Wiss. (1917) p. 324Google Scholar
  25. 25.
    Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sjoberg, P., Lotstedt, P., Elf, J.: Fokker-planck approximation of the master equation in molecular biology. Comput. Visual Sci. 12, 37–50 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Trefethen, L.N., Bau, D.: Numerical Linear Algebra, SIAM, (1997)Google Scholar
  28. 28.
    Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. v258, 585–600 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations