Advertisement

Journal of Scientific Computing

, Volume 68, Issue 3, pp 1267–1280 | Cite as

Modelling of Biological Decontamination of a Water Resource in Natural Environment and Related Feedback Strategies

  • S. Barbier
  • A. Rapaport
  • A. Rousseau
Article
  • 144 Downloads

Abstract

We show how to combine numerical schemes and calibration of systems of o.d.e. to provide efficient feedback strategies for the biological decontamination of water resources. For natural resources, we retain to introduce any bacteria in the resource and treat it aside preserving a constant volume of the resource at any time. The feedback strategies are derived from the minimal time synthesis of the system of o.d.e.

Keywords

Biological water treatment Hydrodynamics Continuous bioreactors Optimal control Numerical simulations Reduced modelling 

Mathematics Subject Classifications

35Q35 35Q30 93A30 49J15 

Notes

Acknowledgments

The authors were supported by the research programs LEFE-INSU CoCoA, LabEx NUMEV and Inria associated team DYMECOS. The authors also want to thank Vincent Guinot and Jérôme Harmand for fruitful discussions related to this work.

References

  1. 1.
    Alford, J.: Bioprocess control: advances and challenges. Comput. Chem. Eng. 30, 1464–1475 (2006)CrossRefGoogle Scholar
  2. 2.
    Banga, J., Balsa-Canto, E., Moles, C., Alonso, A.: Dynamic optimization of bioreactors: a review. Proc. Indian Acad. Sci. 69, 257–265 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14, 641–664 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D’Ans, G., Gottlieb, D., Kokotovic, P.: Optimal control of bacterial growth. Automatica 8, 729–736 (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Estrada, V., Parodi, E.R., Diaz, M.S.: Addressing the control problem of algae growth in water reservoirs with advanced dynamic optimization approaches. Comput. Chem. Eng. 33, 2063–2074 (2009)CrossRefGoogle Scholar
  6. 6.
    Gajardo, P., Harmand, J., Rapaport, A.: Minimal time bioremediation of natural water resources. Automatica 47(8), 6–6 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gajardo, P., Ramirez, H., Riquelme, V., Rapaport, A.: Bioremediation of natural water resources via optimal control techniques. In: Mondaini, R. (Eds.), BIOMAT 2011: International Symposium on Mathematical and Computational Biology, pp. 178–190. World Scientific (2012)Google Scholar
  8. 8.
    Gulati, R.D., van Donk, E.: Lakes in the netherlands, their origin, eutrophication and restoration: state of the art reviews. Hydrobiologia 478, 73–106 (2002)CrossRefGoogle Scholar
  9. 9.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)Google Scholar
  10. 10.
    Kittisupakorn, P., Hussain, M.: Comparison of optimisation based control techniques for the control of a cstr. Int. J. Comput. Appl. Technol. 13(3–5), 178–184 (2000)CrossRefGoogle Scholar
  11. 11.
    Kokotovic, P., D’Ans, G., Gottlieb, D.: Time-optimal control for a model of bacterial growth. J. Optim. Theory Appl. 7, 61–69 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ravindran, S.S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34(5), 425–448 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ramirez, H., Rapaport, A., Riquelme, V.: Optimal feedback synthesis and minimal time function for the bioremediation of water resources with two patches. Preprint hal-01069581 https://hal.archives-ouvertes.fr/hal-01069581 (2015)
  14. 14.
    Sondergaard, M., Jeppesen, E., Lauridsen, T.L., Skov, C., van Nes, E.H., Roijackers, R., Lammens, E., Portielje, R.: Lake restoration: successes, failures and long term effects. J. Appl. Ecol. 44, 1095–1105 (2007)CrossRefGoogle Scholar
  15. 15.
    Soukkou, A., Khellaf, A., Leulmi, S., Boudeghdegh, K.: Optimal control of a cstr process. Braz. J. Chem. Eng 25(4), 799–812 (2008)CrossRefGoogle Scholar
  16. 16.
    Spitzer, D.: Maximization of steady-state bacterial production in a chemostat with pH and substrate control. Biotechnol. Bioeng. 18(2), 167–178 (2004)CrossRefGoogle Scholar
  17. 17.
    Smith, H.L., Waltman, P.: The theory of the chemostat. In: Cannings, C., Hoppensteadt, F. C., Segel, L. A. (eds.) Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995)Google Scholar
  18. 18.
    Temam, R.: Navier–Stokes equations. Theory and numerical analysis. AMS Chelsea Publishing, Providence, RI. Reprint of the 1984 edition (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.UMR INRA SupAgro MISTEAMontpellierFrance
  2. 2.EPI MODEMIC, INRIA Sophia-Antipolis MéditerranéeSophia-AntipolisFrance
  3. 3.Inria and IMAG, Team LEM0NMontpellier Cedex 5France

Personalised recommendations