Journal of Scientific Computing

, Volume 65, Issue 3, pp 940–955 | Cite as

Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Oseen Equations

Article

Abstract

Error estimates with the optimal convergence order are proved for a pressure-stabilized characteristics finite element scheme for the Oseen equations. The scheme is a combination of Lagrange–Galerkin finite element method and Brezzi–Pitkäranta’s stabilization method. The scheme maintains the advantages of both methods; (i) It is robust for convection-dominated problems and the system of linear equations to be solved is symmetric. (ii) Since the P1 finite element is employed for both velocity and pressure, the number of degrees of freedom is much smaller than that of other typical elements for the equations, e.g., P2/P1. Therefore, the scheme is efficient especially for three-dimensional problems. The theoretical convergence order is recognized by two- and three-dimensional numerical results.

Keywords

Error estimates The finite element method The method of characteristics Pressure-stabilization The Oseen equations 

Mathematics Subject Classification

65M12 65M60 65M25 76D07 

Notes

Acknowledgments

The authors are thankful to anonymous referees for their valuable comments. This work was supported by JSPS (the Japan Society for the Promotion of Science) under the Japanese-German Graduate Externship (Mathematical Fluid Dynamics) and by Waseda University under Project research, Spectral analysis and its application to the stability theory of the Navier–Stokes equations of Research Institute for Science and Engineering. The authors are indebted to JSPS also for Grant-in-Aid for Young Scientists (B), No. 26800091 to the first author and for Grants-in-Aid for Scientific Research (C), No. 25400212 and (S), No. 24224004 to the second author.

References

  1. 1.
    Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numer. 15, 3–25 (1981)MATHMathSciNetGoogle Scholar
  2. 2.
    Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  3. 3.
    Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)MATHCrossRefGoogle Scholar
  4. 4.
    Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196, 853–866 (2007)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Brezzi, F., Douglas Jr, J.: Stabilized mixed methods for the Stokes problem. Numer. Math. 53, 225–235 (1988)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg, Wiesbaden (1984)CrossRefGoogle Scholar
  8. 8.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  10. 10.
    Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)MATHGoogle Scholar
  11. 11.
    Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)MATHCrossRefGoogle Scholar
  13. 13.
    Ewing, R.E., Russell, T.F.: Multistep Galerkin methods along characteristics for convection–diffusion problems. In: Vichnevetsky, R., Stepleman, R.S. (eds.) Advances in Computer Methods for Partial Differential Equations. IV, pp. 28–36. IMACS, New Brunswick (1981)Google Scholar
  14. 14.
    Ewing, R.E., Russell, T.F., Wheeler, M.F.: Simulation of miscible displacement using mixed methods and a modified method of characteristics. In: Proceedings of the Seventh Reservoir Simulation Symposium, Society of Petroleum Engineers of AIME. pp. 71–81 (1983)Google Scholar
  15. 15.
    Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)MATHCrossRefGoogle Scholar
  18. 18.
    Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63, 97–112 (1987)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jia, H., Li, K., Liu, S.: Characteristic stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199, 2996–3004 (2010)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATHGoogle Scholar
  21. 21.
    Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Transactions of the Japan Society for Computational. Eng. Sci. 2008, 20080032 (2008)Google Scholar
  22. 22.
    Notsu, H., Rui, H., Tabata, M.: Development and \(L^2\)-analysis of a single-step characteristics finite difference scheme of second order in time for convection-diffusion problems. J. Algorithms Comput. Technol. 7, 343–380 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier–Stokes equations. Trans. Jpn Soc. Ind. Appl. Math. 18, 427–445 (2008). (in Japanese)Google Scholar
  24. 24.
    Notsu, H., Tabata, M.: A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier–Stokes equations. J. Sci. Comput. 38, 1–14 (2009)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Notsu, H., Tabata, M.: Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Navier–Stokes Equations. Waseda University, WIAS Discussion Paper, No. 2013-002 (2013). http://www.waseda.jp/wias/achievement/dp/data/dp2013002
  26. 26.
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Pironneau, O.: Finite Element Methods for Fluids. Wiley, Chichester (1989)Google Scholar
  28. 28.
    Pironneau, O., Tabata, M.: Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type. Int. J. Numer. Methods Fluids 64, 1240–1253 (2010)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection–diffusion problems. Numer. Math. 92, 161–177 (2002)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  31. 31.
    Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)MATHGoogle Scholar
  32. 32.
    Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459–483 (1988)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Tabata, M.: A finite element approximation corresponding to the upwind finite differencing. Mem. Numer. Math. 4, 47–63 (1977)MATHMathSciNetGoogle Scholar
  34. 34.
    Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier–Stokes flows. Jpn. J. Ind. Appl. Math. 17, 371–389 (2000)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Waseda Institute for Advanced StudyWaseda UniversityTokyoJapan
  2. 2.Department of MathematicsWaseda UniversityTokyoJapan

Personalised recommendations