Advertisement

Journal of Scientific Computing

, Volume 68, Issue 1, pp 339–374 | Cite as

Penalty Method for the Stationary Navier–Stokes Problems Under the Slip Boundary Condition

  • Guanyu ZhouEmail author
  • Takahito Kashiwabara
  • Issei Oikawa
Article

Abstract

We consider the penalty method for the stationary Navier–Stokes equations with the slip boundary condition. The well-posedness and the regularity theorem of the penalty problem are investigated, and we obtain the optimal error estimate \(O(\epsilon )\) in \(H^k\)-norm, where \(\epsilon \) is the penalty parameter. We are concerned with the finite element approximation with the P1b / P1 element to the penalty problem. The well-posedness of discrete problem is proved. We obtain the error estimate \(O(h+\sqrt{\epsilon }+h/\sqrt{\epsilon })\) for the non-reduced-integration scheme with \(d=2,3\), and the reduced-integration scheme with \(d=3\), where h is the discretization parameter and d is the spatial dimension. For the reduced-integration scheme with \(d=2\), we prove the convergence order \(O(h+\sqrt{\epsilon }+h^2/\sqrt{\epsilon })\). The theoretical results are verified by numerical experiments.

Keywords

Finite element method The Navier–Stokes equations  Slip boundary condition Penalty method 

Mathematics Subject Classification

65N60 35Q30 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

References

  1. 1.
    Amrouche, C., Girault, V.: On the existence and regularity of the solution of the Stokes problem in arbitrary dimension. Proc. Jpn. Acad. 67, 171–175 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bänsch, E., Deckelnick, K.: Optimal error estimates for the Stokes and Navier–Stokes equations with slip boundary condition. M2AN 33, 923–938 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bothe, D., Köhne, M., Prüss, J.: On a class of energy preserving boundary conditions for incompressible Newtonian flows. SIAM J. Math. Anal. 45, 3768–3822 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations on Related Models. Springer, New York (2012)zbMATHGoogle Scholar
  6. 6.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Caglar, A., Liakos, A.: Weak imposition of boundary conditions for the Navier–Stokes equations by a penalty method. Int. J. Numer. Methods Fluids 61, 411–431 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 1–33 (1961)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries-Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2011)zbMATHGoogle Scholar
  10. 10.
    Dione, I., Urquiza, J.M.: Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1998)zbMATHGoogle Scholar
  13. 13.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman, New York (1985)zbMATHGoogle Scholar
  14. 14.
    Hecht, F., Pironneau, O., Le Hyaric, F., Ohtsuka, K.: Freefem++, available online at www.freefem.org
  15. 15.
    Knobloch, P.: Variational crimes in a finite element discretization of 3D stokes equations with nonstandard boundary conditions, east–west. J. Numer. Math. 7, 133–158 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under slip boundary condition, arXiv:1505.06540
  17. 17.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  18. 18.
    Logg, A., Mardal, K.-A., Well, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, New York (2012)CrossRefGoogle Scholar
  19. 19.
    Saito, N.: On the stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions. Publ. RIMS, Kyoto Univ. 40, 345–383 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shibata, Y., Shimizu, S.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Jpn. 59, 1–34 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tabata, M.: Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients-thermal convection problems in a spherical shell. Future Gener. Comput. Syst. 22, 521–531 (2006)CrossRefGoogle Scholar
  22. 22.
    Tabata, M., Suzuki, A.: A stabilized finite element method foe the Rayleigh–Bénard equations with infinite Prandtl number in a spherical shell. Comput. Methods Appl. Mech. Eng. 190, 387–402 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ženíšek, A.: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, Waltham (1990)zbMATHGoogle Scholar
  26. 26.
    Zhang, S.: Analysis of finite element domain embedding methods for curved domains using uniform grids. SIAM J. Numer. Anal. 46, 2843–2866 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhou, G., Saito, N.: Analysis of the fictitious domain method with penalty for elliptic problems. Jpn. J. Ind. Appl. Math. 31, 57–85 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan
  2. 2.Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
  3. 3.Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations