Advertisement

Journal of Scientific Computing

, Volume 68, Issue 1, pp 92–115 | Cite as

A 5-Wave Relaxation Solver for the Shallow Water MHD System

  • François BouchutEmail author
  • Xavier Lhébrard
Article

Abstract

The shallow water magnetohydrodynamic system describes the thin layer evolution of the solar tachocline. It is obtained from the three dimensional incompressible magnetohydrodynamic system similarly as the classical shallow water system is obtained from the incompressible Navier–Stokes equations. The system is hyperbolic and has two additional waves with respect to the shallow water system, the Alfven waves. These are linearly degenerate, and thus do not generate dissipation. In the present work we introduce a 5-wave approximate Riemann solver for the shallow water magnetohydrodynamic system, that has the property to be non dissipative on Alfven waves. It is obtained by solving a relaxation system of Suliciu type, and is similar to HLLC type solvers. The solver is positive and entropy satisfying, ensuring its robustness. It has sharp wave speeds, and does not involve any iterative procedure.

Keywords

Shallow water magnetohydrodynamics Approximate Riemann solver Relaxation Contact discontinuities Entropy inequality 

Mathematics Subject Classification

76W05 76M12 35L65 

References

  1. 1.
    Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLL and HLLC Riemann solvers for unstructured meshes with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berthon, C., Charrier, P., Dubroca, B.: An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comput. 31, 347–389 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berthon, C., Dubroca, B., Sangam, A.: A local entropy minimum principle for deriving entropy preserving schemes. SIAM Numer. Anal. 50, 468–491 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bézard, F., Després, B.: An entropic solver for ideal Lagrangian magnetohydrodynamics. J. Comput. Phys. 154, 65–89 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouchut, F.: Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94, 623–672 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Birkhäuser, Basel (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouchut, F., Boyaval, S.: A new model for shallow viscoelastic fluids. Math. Models Methods Appl. Sci. 23, 1479–1526 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave approximate Riemann solver for ideal MHD based on relaxation I—theoretical framework. Numer. Math. 108, 7–42 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave approximate Riemann solver for ideal MHD based on relaxation II—numerical implementation with 3 and 5 waves. Numer. Math. 115, 647–679 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chalons, C., Coquel, F., Marmignon, C.: Well-balanced time implicit formulation of relaxation schemes for the Euler equations. SIAM J. Sci. Comput. 30, 394–415 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chalons, C., Coquel, F.: Modified Suliciu relaxation system and exact resolution of isolated shock waves. Math. Models Methods Appl. Sci. 24, 937–971 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Coquel, F., Godlewski, E., Seguin, N.: Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22, 1250014 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dellar, P.J.: Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics. Phys. Plasmas 9, 1130 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Després, B.: Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition. Numer. Math. 89, 99–134 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    DeSterck, H.: Hyperbolic theory of the shallow water magnetohydrodynamics equations. Phys. Plasmas 8, 3293 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fuchs, F.G., McMurry, A.D., Mishra, S., Risebro, N.H., Waagan, K.: Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations. Commun. Comput. Phys. 9, 324–362 (2011)MathSciNetGoogle Scholar
  17. 17.
    Gallice, G.: Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94, 673–713 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gilman, P.A.: Magnetohydrodynamic “shallow water” equations for the solar tachocline. Astrophys. J. Lett. 544, L79–L82 (2000)CrossRefGoogle Scholar
  19. 19.
    Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Janhunen, P.: A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J. Comput. Phys. 160, 649–661 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rossmanith, J.A.: A constrained transport method for the shallow water MHD equations. In: Hou, T.Y., Tadmor, E. (eds.) 9th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Pasadena, 2002, pp. 851–860 (2003)Google Scholar
  22. 22.
    Rossmanith, J.A., Bale, D.S., Leveque, R.J.: A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199, 631–662 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sangam, A.: An HLLC scheme for ten-moments approximation coupled with magnetic field. Int. J. Comput. Sci. Math. 2, 73–109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Suliciu, I.: Some stability–instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Int. J. Eng. Sci. 30, 483–494 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Waagan, K., Federrath, C., Klingenberg, C.: A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230, 3331–3351 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zeitlin, V.: Remarks on rotating shallow-water magnetohydrodynamics. Nonlinear Process. Geophys. 20, 893–898 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), CNRS, UPEM, UPECUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations