Journal of Scientific Computing

, Volume 68, Issue 1, pp 21–41 | Cite as

Goal-Oriented Error Estimation for the Reduced Basis Method, with Application to Sensitivity Analysis

  • Alexandre Janon
  • Maëlle Nodet
  • Clémentine Prieur
Article

Abstract

The reduced basis method is a powerful model reduction technique designed to speed up the computation of multiple numerical solutions of parametrized partial differential equations. We consider a quantity of interest, which is a linear functional of the PDE solution. A new probabilistic error bound for the reduced model is proposed. It is efficiently and explicitly computable, and we show on different examples that this error bound is sharper than existing ones. We include application of our work to sensitivity analysis studies.

Keywords

Reduced basis method Surrogate model Reduced order modelling Response surface method Scientific computation Sensitivity analysis Sobol index computation Monte-Carlo method 

Mathematics Subject Classification

65M15 

References

  1. 1.
    Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. Math. Modell. Numer. Anal. (2009)Google Scholar
  2. 2.
    Bui-Thanh, T., Willcox, K., Ghattas, O., van Bloemen Waanders, B.: Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys. 224(2), 880–896 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Society for Industrial Mathematics, Philadelphia (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Modell. Numer. Anal. 39(1), 157–181 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus Math. 345(8), 473–478 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ilak, M., Rowley, C.W.: Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20, 034103 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Janon, A., Nodet, M., Prieur, C.: Certified reduced-basis solutions of viscous Burgers equations parametrized by initial and boundary values. http://hal.inria.fr/inria-00524727/en, Accepted in Mathematical modelling and Numerical Analysis (2010)
  8. 8.
    Janon, A., Nodet, M., Prieur, C.: Uncertainties assessment in global sensitivity indices estimation from metamodels. Int. J. Uncertain. Quantif. (2012)Google Scholar
  9. 9.
    Knezevic, D.J., Nguyen, N.C., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady boussinesq equations. Math. Models Methods Appl. Sci. (2010)Google Scholar
  10. 10.
    Machiels, L., Patera, A.T., Peraire, J., Maday, Y.: A general framework for finite element a posteriori error control: application to linear and nonlinear convection-dominated problems. In: Proceedings of ICFD Conference, Oxford (1998)Google Scholar
  11. 11.
    Maday, Y., Patera, A.T., Rovas, D.V.: A blackbox reduced-basis output bound method for noncoercive linear problems. In: Cioranescu, D., Lions, J.-L. (eds.) Nonlinear Partial Differential Equations and their Applications Collège de France Seminar Volume XIV, volume 31 of Studies in Mathematics and Its Applications, pp. 533–569. Elsevier, Amsterdam (2002)Google Scholar
  12. 12.
    Nguyen, N.C., Veroy, K., Patera, A.T.: Certified real-time solution of parametrized partial differential equations. In: Handbook of Materials Modeling, pp. 1523–1558 (2005)Google Scholar
  13. 13.
    Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1(1), 3 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Heidelberg (2008)MATHGoogle Scholar
  15. 15.
    Rozza, G., Patera, A.T.: Venturi: potential flow. http://augustine.mit.edu/workedproblems/rbMIT/venturi/, (2008)
  16. 16.
    Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145(2), 280–297 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. Wiley series in probability and statistics. Wiley, Chichester (2000)MATHGoogle Scholar
  18. 18.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Part i–ii. Q. Appl. Math. 45(3), 561–590 (1987)MathSciNetMATHGoogle Scholar
  19. 19.
    Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory. Springer, Heidelberg (2005)CrossRefMATHGoogle Scholar
  20. 20.
    van der Vaart, A.W.: Asymptotic Statistics, Volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)Google Scholar
  21. 21.
    Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, vol. 3847 (2003)Google Scholar
  23. 23.
    Volkwein, S.: Proper orthogonal decomposition and singular value decomposition. Spezialforschungsbereich F003 Optimierung und Kontrolle, Projektbereich Kontinuierliche Optimierung und Kontrolle, Bericht. Nr. 153, Graz (1999)Google Scholar
  24. 24.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRefGoogle Scholar
  25. 25.
    Zhu, C., Bryd, R.H., Nocedal, J.: L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alexandre Janon
    • 1
  • Maëlle Nodet
    • 2
  • Clémentine Prieur
    • 2
  1. 1.Laboratoire de Mathématiques d’OrsayUniversité Paris-SudOrsayFrance
  2. 2.Laboratoire Jean KuntzmannUniversité Joseph Fourier, INRIA/MOISEGrenobleFrance

Personalised recommendations