Journal of Scientific Computing

, Volume 67, Issue 2, pp 644–668 | Cite as

Convergence Analysis of the Parareal-Euler Algorithm for Systems of ODEs with Complex Eigenvalues

  • Shu-Lin WuEmail author


Parareal is an iterative algorithm and is characterized by two propagators \(\mathscr {G}\) and \(\mathscr {F}\), which are respectively associated with large step size \(\varDelta T\) and small step size \(\varDelta t\), where \(\varDelta T=J\varDelta t\) and \(J\ge 2\) is an integer. The choice \(\mathscr {G}=\mathscr {F}=\)Backward-Euler denotes the simplest implicit parareal solver, which we call Parareal-Euler, and has been studied widely in recent years. For linear problem \(\mathbf {U}'(t)+\mathbf {A}\mathbf {U}(t)=\mathbf {g}(t)\) with \(\mathbf {A}\) being a symmetric positive definite matrix, this algorithm converges very fast and the convergence rate is insensitive to the change of J and \(\varDelta t\). However, for the case that the spectrum of \(\mathbf {A}\) contains complex values, no provable results are available in the literature so far. Previous studies based on numerical plotting show that we can not expect convergence for the Parareal-Euler algorithm on the whole right-hand side of the complex plane. Here, we consider a representative situation: \(\sigma (\mathbf {A})\subseteq \mathbf {D}(\theta ):=\left\{ (x,iy)\in \mathbf {C}: x\ge 0, |y|\le \tan (\theta )x\right\} \) with \(\theta \in (0, \frac{\pi }{2})\), i.e., the spectrum \(\sigma (A)\) is contained in a sectorial region. Spectrum distribution of this type arises naturally for semi-discretizing a wide rang of time-dependent PDEs, e.g., the Fokker-Planck equations. We derive condition, which is independent of J and depends on \(\theta \) only, to ensure convergence of the Parareal-Euler algorithm. Numerical results for initial value and time-periodic problems are provided to support our theoretical conclusions.


Parareal algorithm Backward-Euler Convergence analysis Complex eigenvalues 

Mathematics Subject Classification

65R20 45L05 65L20 



The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improved the quality of this paper. This work was supported by the NSF of China (11301362, 11371157, 91130003), the NSF of Technology & Education of Sichuan Province (2014JQ0035,15ZA0220), the project of key laboratory of bridge non-destruction detecting and computing (2013QZY01) and the NSF of SUSE (2015LX01).


  1. 1.
    Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. Lect. Notes Comput. Sci. Eng. 40, 426–432 (2003)MathSciNetGoogle Scholar
  2. 2.
    Celledoni, E., Kvamsdal, T.: Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium. Int. J. Numer. Methods Eng. 79(5), 576–598 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cortial, J., Farhat, C.: A time-parallel implicit method for accelerating the solution of nonlinear structural dynamics problems. Int. J. Numer. Methods Eng. 77(4), 451–470 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dai, X.Y., Maday, Y.: Stable parareal in time method for first- and second-order hyperbolic systems. SIAM J. Sci. Comput. 35(1), A52–A78 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dai, X.Y., Le Bris, C., Legoll, F., Maday, Y.: Symmetric parareal algorithms for Hamiltonian systems. M2AN Math. Model Numer. Anal. 47(3), 717–742 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Du, X.H., Sarkis, M., Schaerer, C.F., Szyld, D.B.: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems. Electron. Trans. Numer. Anal. 40, 36–57 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67(5), 697–724 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fok, J.C.M., Guo, B.Y., Tang, T.: Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comput. 71(240), 1497–1528 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gander, M.J., Vandewalle, S.: On the superlinear and linear convergence of the parareal algorithm. Lect. Notes Comput. Sci. Eng. 55, 291–298 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gander, M.J., Jiang, Y.L., Song, B., Zhang, H.: Analysis of two parareal algorithms for time-periodic problems. SIAM J. Sci. Comput. 35(5), A2393–A2415 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gander, M.J., Hairer, E.: Analysis for parareal algorithms applied to Hamiltonian differential equations. J. Comput. Appl. Math. 259, 2–13 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gottlieb, D., Orszag, S.: Numerical analysis of spectral methods: theory and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 26. SIAM , Philadelphia (1977)Google Scholar
  16. 16.
    He, L., He, M.: Parareal in time simulation of morphological transformation in cubic alloys with spatially dependent composition. Commun. Comput. Phys. 11(5), 1697–1717 (2012)Google Scholar
  17. 17.
    Haut, T., Wingate, B.: An asymptotic parallel-in-time method for highly oscillatory PDEs. SIAM J. Sci. Comput. 36(2), A693–A713 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, X.J., Tang, T., Xu, C.J.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51(3), 1735–1756 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Legoll, F., Lelièvre, T., Samaey, G.: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations. SIAM J. Sci. Comput. 35(4), A1951–A1986 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maday, Y., Riahi, M.K., Salomon, J.: Parareal in time intermediate targets methods for optimal control problems. In: Control and Optimization with PDE Constraints, pp. 79–92. Springer, Basel (2013)Google Scholar
  22. 22.
    Maday, Y., Salomon, J., Turinici, G.: Monotonic parareal control for quantum systems. SIAM J. Numer. Anal. 45(6), 2468–2482 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mathew, T.R., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal controal problems. SIAM J. Sci. Comput. 32(3), 1180–1200 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Minion, M.L.: A hybrid parareal spectral deferred corrections method. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R.: An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm. J. Comput. Phys. 255(255), 293–315 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R., Samaddar, D., Berry, L.A., Elwasif, W.R.: Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations. J. Comput. Phys. 231(23), 7851–7867 (2012)CrossRefGoogle Scholar
  27. 27.
    Samaddar, D., Newman, D.E., Sánchez, R.: Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm. J. Comput. Phys. 229(18), 6558–6573 (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shen, J., Wang, L.L.: Review article: some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2–4), 195–241 (2009)MathSciNetGoogle Scholar
  29. 29.
    Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14, 594–606 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tang, T., Mckee, S., Reeks, M.W.: A spectral method for the numerical solutions of a kinetic equation describing the dispersion of small particles in a turbulent flow. J. Comput. Phys. 103, 222–230 (1991)CrossRefzbMATHGoogle Scholar
  31. 31.
    Wu, S.L.: Convergence analysis of some second-order parareal algorithms. IMA J. Numer. Anal. (2014). doi: 10.1093/imanum/dru031
  32. 32.
    Wu, S.L., Shi, B.C., Huang, C.M.: Parareal-Richardson algorithm for solving nonlinear ODEs and PDEs. Commun. Comput. Phys. 6(4), 883–902 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of ScienceSichuan University of Science and EngineeringZigongPeople’s Republic of China

Personalised recommendations