Journal of Scientific Computing

, Volume 67, Issue 2, pp 475–492 | Cite as

Analysis of a Reduced-Order HDG Method for the Stokes Equations

  • Issei OikawaEmail author


In this paper, we analyze a hybridized discontinuous Galerkin method with reduced stabilization for the Stokes equations. The reduced stabilization enables us to reduce the number of facet unknowns and improve the computational efficiency of the method. We provide optimal error estimates in an energy and \(L^2\) norms. It is shown that the reduced method with the lowest-order approximation is closely related to the nonconforming Crouzeix–Raviart finite element method. We also prove that the solution of the reduced method converges to the nonconforming Gauss-Legendre finite element solution as a stabilization parameter \(\tau \) tends to infinity and that the convergence rate is \(O(\tau ^{-1})\).


Discontinuous Galerkin method Hybridization Gauss-Legendre element Stokes equations 


  1. 1.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baran, Á., Stoyan, G.: Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79(1), 1–21 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Becker, R., Capatina, D., Joie, J.: Connections between discontinuous Galerkin and nonconforming finite element methods for the Stokes equations. Numer. Methods Partial Differ. Equ. 28(3), 1013–1041 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)zbMATHGoogle Scholar
  6. 6.
    Burman, E., Stamm, B.: Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(1), 508–533 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burman, E., Stamm, B.: Local discontinuous Galerkin method with reduced stabilization for diffusion equations. Commun. Comput. Phys. 5(2–4), 498–514 (2009)MathSciNetGoogle Scholar
  8. 8.
    Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. I. The Stokes problem. Math. Comput. 75(254), 533–563 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Cui, J.: An analysis of HDG methods for the vorticity–velocity–pressure formulation of the Stokes problem in three dimensions. Math. Comput. 81, 1355–1368 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Cui, J.: Divergence-free HDG methods for the vorticity–velocity formulation of the Stokes problem. J. Sci. Comput. 52, 256–270 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83(288), 1571–1598 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Crouzeix, M., Falk, R.S.: Nonconforming finite elements for the Stokes problem. Math. Comput. 52(186), 437–456 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. ESAIM. Math. Model. Numer. Anal. 7, 33–75 (1973)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Egger, H., Waluga, C.: \(hp\) analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33(2), 687–721 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fortin, M., Soulie, M.: A nonconforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng. 19(4), 505–520 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Güzey, S., Cockburn, B., Stolarski, H.K.: The embedded discontinuous Galerkin method: application to linear shell problems. Int. J. Numer. Methods Eng. 70(7), 757–790 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lehrenfeld, C.: Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems. Ph.D. Thesis, RWTH Aachen University (2010)Google Scholar
  22. 22.
    Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. (2014). doi: 10.1007/s10915-014-9962-6
  24. 24.
    Qiu, W., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses (2013, submitted). arXiv:1312.1407
  25. 25.
    Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. (2015). doi: 10.1007/s10915-015-0024-5
  26. 26.
    Stoyan, G., Baran, Á.: Crouzeix-Velte decompositions for higher-order finite elements. Comput. Math. Appl. 51(6–7), 967–986 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringWaseda UniversityShinjukuJapan

Personalised recommendations