Journal of Scientific Computing

, Volume 67, Issue 1, pp 324–350 | Cite as

Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients

  • Tzanio V. Kolev
  • Jinchao Xu
  • Yunrong Zhu


In this paper, we extend some of the multilevel convergence results obtained by Xu and Zhu in [Xu and Zhu, M3AS 2008], to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner.


Reaction-diffusion equations Multigrid BPX Discontinuous coefficients Robust solver Multilevel preconditioners 

Mathematics Subject Classification

65F10 65N20 65N30 


  1. 1.
    Aksoylu, B., Graham, I., Klie, H., Scheichl, R.: Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems. Comput. Vis. Sci. 11(4), 319–331 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Axelsson, O.: Iterative solution methods. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Axelsson, O.: Iteration number for the conjugate gradient method. Math. Comput. Simul. 61(3–6), 421–435 (2003). MODELING 2001 (Pilsen)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ayuso de Dios, B., Holst, M., Zhu, Y., Zikatanov, L.: Multilevel preconditioners for discontinuous, Galerkin approximations of elliptic problems, with jump coefficients. Math. Comp. 83(287), 1083–1120 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bramble, J.H., Xu, J.: Some estimates for a weighted \({L}^2\) projection. Math. Comput. 56, 463–476 (1991)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chan, T.F., Wan, W.L.: Robust multigrid methods for nonsmooth coefficient elliptic linear systems. J. Comput. Appl. Math. 123(1–2), 323–352 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, L., Holst, M., Xu, J., Zhu, Y.: Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids. Comput. Vis. Sci. 15(5), 271–289 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cho, S., Nepomnyaschikh, S.V. and Park, E.-J.: Domain decomposition preconditioning for elliptic problems with jumps in coefficients. Technical Report RICAM-Report 05-22, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, (2005)Google Scholar
  10. 10.
    Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  13. 13.
    Graham, I., Lechner, P., Scheichl, R.: Domain decomposition for multiscale PDEs. Numeri. Math. 106(4), 589–626 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Graham, I.G., Hagger, M.J.: Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 20, 2041–2066 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hackbusch, W.: Multigrid Methods and Applications. Computational Mathematics, vol. 4. Springer, Berlin (1985)Google Scholar
  16. 16.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Volume 95 of Applied Mathematical Sciences. Springer, New York (1994)CrossRefGoogle Scholar
  17. 17.
    Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kolev, Tz, Vassilevski, P.: Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27, 604–623 (2009). Special issue on Adaptive and Multilevel Methods in ElectromagneticsMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kraus, J., Wolfmayr, M.: On the robustness and optimality of algebraic multilevel methods for reaction-diffusion type problems. Comput. Vis. Sci. 16(1), 15–32 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    MFEM: Modular parallel finite element methods library.
  21. 21.
    Nabben, R., Vuik, C.: A comparison of deflation and coarse grid correction applied to porous media flow. SIAM J. Numer. Anal. 42(4), 1631–1647 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Oswald, P.: On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comput. 68, 633–650 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Scheichl, R., Vainikko, E.: Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing 80(4), 319–343 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Scheichl, R., Vassilevski, P., Zikatanov, L.: Multilevel methods for elliptic problems with highly varying coefficients on nonaligned coarse grids. SIAM J. Numer. Anal. 50(3), 1675–1694 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vassilevski, P.: Multilevel Block Factorization Preconditioners: Matrix-based Analysis and algorithms for solving finite element equations. Springer, New York (2008)zbMATHGoogle Scholar
  28. 28.
    Wang, J.: New convergence estimates for multilevel algorithms for finite-element approximations. J. Comput. Appl. Math. 50, 593–604 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, J. and Xie, R.: Domain decomposition for elliptic problems with large jumps in coefficients. In the Proceedings of Conference on Scientific and Engineering Computing, pages 74–86. National Defense Industry Press, (1994)Google Scholar
  30. 30.
    Widlund, O.B.: Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In: Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.) Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 19–36. SIAM, Philadelphia (1992)Google Scholar
  31. 31.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Xu, J., Zhu, Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Model. Method. App. Sci. 18(1), 77–105 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhu, Y.: Domain decomposition preconditioners for elliptic equations with jump coefficients. Numer. Linear Algebra Appl. 15(2–3), 271–289 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhu, Y.: Analysis of a multigrid preconditioner for Crouzeix–Raviart discretization of elliptic partial differential equation with jump coefficients. Numer. Linear Algebra Appl. 21(1), 24–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of MathematicsPenn. State UniversityUniversity ParkUSA
  3. 3.Department of MathematicsIdaho State UniversityPocatelloUSA

Personalised recommendations