Journal of Scientific Computing

, Volume 67, Issue 1, pp 221–236 | Cite as

An Adaptive Rational Block Lanczos-Type Algorithm for Model Reduction of Large Scale Dynamical Systems

  • H. Barkouki
  • A. H. Bentbib
  • K. Jbilou


Multipoint moment matching based methods are considered as powerful methods for model-order reduction problems. They are related to rational Krylov subspaces (classical or block ones) and are based on the selection of some interpolation points which is the major problem for these methods. In this work, an adaptive rational block Lanczos-type algorithm is proposed and applied for model order reduction of dynamical multi-input and multi-output linear time independent dynamical systems. We give some algebraic properties of the proposed algorithm and derive an explicit formulation of the error between the original and the reduced transfer functions. An adaptive method for choosing the interpolation points is also introduced. Finally, some numerical experiments are reported to show the effectiveness of the proposed adaptive rational block Lanczos-type process.


Moment matching Model-order reduction Rational block Lanczos Transfer function 

Mathematics Subject Classification

MSC 65F MSC 15A 



We would like to thank the two referees for their helpful remarks and valuable suggestions. We also thank Serkan Gugercin for providing us with the matlab program of IRKA.

Compliance with Ethical Standards

Conflicts of interest

The Authors declare that there is no conflict of interest.


  1. 1.
    Anderson, B.O., Antoulas, A.C.: Rational interpolation and state-variable realizations. Linear Algebra Appl. 137–138, 479–509 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antoulas, A.C., Sorensen, D.C.: Approximation of large-scale dynamical systems: an overview. Int. J. Appl. Math. Comput. Sci. 11(5), 1093–1121 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large scale systems. Contemp. Math. 280, 193–219 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bai, Z., Day, D., Ye, Q.: ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bai, Z., Slone, R.D., Smith, W.T., Ye, Q.: Error bounds for reduced system model by Padé approximation via the Lanczos process. IEEE Trans. Comput. Aided Design. 18(2), 133–141 (1999)CrossRefGoogle Scholar
  6. 6.
    Baker Jr, G.A.: Essentials of Padé approximation. Academic Press, New York (1975)zbMATHGoogle Scholar
  7. 7.
    Beattie, C., Gugercin, S.: Krylov-based minimization for optimal \({\fancyscript {H}}_{2}\) model reduction. In: Proceedings of the 46th IEEE Conference on Decision and Control., 4385–4390 (2007)Google Scholar
  8. 8.
    Beattie, C., Gugercin, S.: Realization-independent \({\fancyscript {H}}_{2}\) approximation. In: 51st IEEE Conference on Decision and Control. (2012)Google Scholar
  9. 9.
    Bodendiek, A., Bollhöfer, M.: Adaptive-order rational Arnoldi-type methods in computational electromagnetism, BIT Numer. Math., 1-24 (2013)Google Scholar
  10. 10.
    Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60(8), 546–560 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feldman, P., Freund, R.W.: Efficient linear circuit analysis by Padé approximation via a Lanczos method. IEEE Trans. Comput. Aided Des. 14, 639–649 (1995)CrossRefGoogle Scholar
  12. 12.
    Frangos, M., Jaimoukha, I.M.: Adaptive rational Krylov algorithms for model reduction, In Proceedings of the European Control Conference, 4179–4186 (2007)Google Scholar
  13. 13.
    Frangos, M., Jaimoukha, I.M.: Adaptive rational interpolation: Arnoldi and Lanczos-like equations. Eur. J. Control 14(4), 342–354 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gallivan, K., Grimme, E., Van Dooren, P.: Padé Approximation of Large-Scale Dynamic Systems with Lanczos Methods. In Proceedings of the 33rd IEEE Conference on Decision and Control, 443–448 (1994)Google Scholar
  15. 15.
    Gallivan, K., Grimme, E., Van Dooren, P.: A rational Lanczos algorithm for model reduction. Num. Algebra 12, 33–63 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gallivan, K., Vandendorpe, A., Van Dooren, P.: Sylvester equations and projection-based model reduction. J. Comp. Appl. Math. 162, 213–229 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Glover, K.: All optimal Hankel-norm approximation of linear multivariable systems and their \(L^{\infty }\)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gragg, W.B., Lindquist, A.: On the partial realization problem. Linear Algebra Appl. 50, 277–319 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grimme, E.: Krylov Projection methods for model reduction, PhD thesis, ECE Department, University of Illinois, Urbana-Champaign (1997)Google Scholar
  20. 20.
    Grimme, E., Gallivan, K., Van Dooren, P.: Rational Lanczos algorithm for model reduction II: interpolation point selection, Technical report, University of Illinois at Urbana Champaign (1998)Google Scholar
  21. 21.
    Gugercin, S., Antoulas, A.C.: Model reduction of large scale systems by least squares. Linear Algebra Appl. 415(2–3), 290–321 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gugercin, S., Antoulas, A.C., Beattie, C.: Rational Krylov methods for optimal \({\fancyscript {H}}_{2}\) model reduction, submitted for publication (2006)Google Scholar
  23. 23.
    Heyouni, M., Jbilou, K., Messaoudi, A., Tabaa, K.: Model reduction in large scale MIMO dynamical systems via the block Lanczos method. Comput. Appl. Math. 27(2), 211–236 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 225–280 (1950)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lee, H.J., Chu, C.C., Feng, W.S.: An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems. Linear Algebra Appl. 415, 235–261 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nguyen, T.V., Li, JR.: Multipoint Padé Approximation using a rational block Lanczos algorithm, In: Proceedings of IEEE International Conference on Computer Aided Design, 72–75 (1997)Google Scholar
  27. 27.
    Panzer, H., Jaensch, S., Wolf, T., Lohmann, B.: A greedy rational Krylov method for \({\fancyscript {H}}_{2}\)-pseudo-optimal model order reduction with preservation of stability. In: American Control Conference (ACC), 5532–5537 (2013)Google Scholar
  28. 28.
    Penzl, T.: LYAPACK-A MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems,
  29. 29.
    Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems II: matrix pairs. Linear Algebra Appl. 197, 283–295 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Soppa, A.: Krylov-Unterraum basierte Modellreduktion zur Simulation von Werkzeugmaschinen, PhD thesis, University Braunschweig (2011)Google Scholar
  31. 31.
    Van Dooren, P.: The Lanczos algorithm and Padé approximations. In: Short Course, Benelux Meeting on Systems and Control (1995)Google Scholar
  32. 32.
    Yousuff, A., Skelton, R.E., et al.: Covariance equivalent realizations with applications to model reduction of large-scale systems. In: Leondes, C.T. (ed.) Control and Dynamic Systems, vol. 22, pp. 273–348. Academic Press, Waltham (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculté des Sciences et Techniques-GuelizLaboratoire de Mathématiques Appliquées et InformatiqueMarrakechMorocco
  2. 2.Université du Littoral, Côte d’OpaleCalais CedexFrance

Personalised recommendations