Advertisement

Journal of Scientific Computing

, Volume 67, Issue 1, pp 103–129 | Cite as

Removing Mixture of Gaussian and Impulse Noise by Patch-Based Weighted Means

  • Haijuan Hu
  • Bing Li
  • Quansheng LiuEmail author
Article

Abstract

We first establish a law of large numbers and a convergence theorem in distribution to show the rate of convergence of the non-local means filter for removing Gaussian noise. Based on the convergence theorems, we propose a patch-based weighted means filter for removing an impulse noise and its mixture with a Gaussian noise by combining the essential idea of the trilateral filter and that of the non-local means filter. Experiments show that our filter is competitive compared to recently proposed methods. We also introduce the notion of degree of similarity to measure the impact of the similarity among patches on the non-local means filter for removing a Gaussian noise, as well as on our new filter for removing an impulse noise or a mixed noise. Using again the convergence theorem in distribution, together with the notion of degree of similarity, we obtain an estimation for the PSNR value of the denoised image by the non-local means filter or by the new proposed filter, which is close to the real PSNR value.

Keywords

Gaussian noise Impulse noise Mixed noise Trilateral filter Non-local means filter Convergence theorems Degree of similarity Estimation of PSNR  

Notes

Acknowledgments

The work has been supported by the Fundamental Research Funds for the Central Universities in China (No.N130323016), the Research Funds of Northeastern University at Qinhuangdao (No. XNB201312, China), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(48-2), the National Natural Science Foundation of China (Grant Nos. 11171044 and 11401590), and the Science and Technology Research Program of Zhongshan (Grant No. 20123A351, China). The authors are very grateful to the reviewers for their valuable remarks and comments which led to a significant improvement of the manuscript. They are also grateful to Prof. Raymond H. Chan and Dr. Yiqiu Dong for kindly providing the code of ROLD-EPR.

References

  1. 1.
    Akkoul, S., Ledee, R., Leconge, R., Harba, R.: A new adaptive switching median filter. IEEE Signal Process. Lett. 17(6), 587–590 (2010)CrossRefGoogle Scholar
  2. 2.
    Bilcu, R.C., Vehvilainen, M.: Fast nonlocal means for image denoising. In: Proceedings of SPIE, Digital Photography III 6502, 65020R (2007)Google Scholar
  3. 3.
    Bovik, A.: Handbook of Image and Video Processing. Academic Press, London (2005)zbMATHGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castleman, K.: Digital Image Processing. Prentice Hall Press, Upper Saddle River (1996)Google Scholar
  6. 6.
    Chan, R., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11(12), 921–924 (2004)CrossRefGoogle Scholar
  7. 7.
    Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, T., Wu, H.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8(1), 1–3 (2001)CrossRefGoogle Scholar
  9. 9.
    Chow, Y., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. Springer, Berlin (2003)zbMATHGoogle Scholar
  10. 10.
    Coifman, R., Donoho, D.: Translation-invariant denoising. Wavel. Stat. 103, 125–150 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Delon, J., Desolneux, A.: A patch-based approach for random-valued impulse noise removal. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1093–1096. IEEE (2012)Google Scholar
  13. 13.
    Delon, J., Desolneux, A.: A patch-based approach for removing impulse or mixed gaussian-impulse noise. SIAM J. Imaging Sci. 6(2), 1140–1174 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dong, Y., Chan, R., Xu, S.: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Donoho, D., Johnstone, J.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24(5), 1754–1767 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Duval, V., Aujol, J., Gousseau, Y.: A bias-variance approach for the nonlocal means. SIAM J. Imaging Sci. 4, 760–788 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)CrossRefGoogle Scholar
  20. 20.
    Hu, H., Froment, J.: Nonlocal total variation for image denoising. In: Symposium on Photonics and Optoelectronics (SOPO), pp. 1–4. IEEE (2012)Google Scholar
  21. 21.
    Hu, H., Li, B., Liu, Q.: Non-local filter for removing a mixture of gaussian and impulse noises. In: Csurka, G., Braz, J. (eds.) VISAPP, vol. 1, pp. 145–150. SciTePress (2012)Google Scholar
  22. 22.
    Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. B B 59(2), 319–351 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kervrann, C., Boulanger, J.: Local adaptivity to variable smoothness for exemplar-based image regularization and representation. Int. J. Comput. Vis. 79(1), 45–69 (2008)CrossRefGoogle Scholar
  24. 24.
    Li, B., Liu, Q., Xu, J., Luo, X.: A new method for removing mixed noises. Sci. China Inf. Sci. 54, 51–59 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    López-Rubio, E.: Restoration of images corrupted by gaussian and uniform impulsive noise. Pattern Recognit. 43(5), 1835–1846 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Mahmoudi, M., Sapiro, J.: Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal. Process. Lett. 12(12), 839–842 (2005)CrossRefGoogle Scholar
  27. 27.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7, 214–241 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Muresan, D., Parks, T.: Adaptive principal components and image denoising. In: IEEE International Conference on image processing (2003)Google Scholar
  29. 29.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pratt, W.: Median filtering. Semiannual Report, Image Processing Institute, University of Southern California, Los Angeles, Tech. Rep pp. 116–123 (1975)Google Scholar
  31. 31.
    Pruitt, W.: Summability of independent random variables. J. Math. Mech. 15, 769–776 (1966)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Smith, S., Brady, J.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)CrossRefGoogle Scholar
  34. 34.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the international confernce on computer vision, pp. 839–846. IEEE (1998)Google Scholar
  35. 35.
    Van De Ville, D., Kocher, M.: Sure-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009)CrossRefGoogle Scholar
  36. 36.
    Wen, Z.Y.: Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins. Bull. Soc. Math. Fr. 114, 403–429 (1986)zbMATHGoogle Scholar
  37. 37.
    Xiao, Y., Zeng, T., Yu, J., Ng, M.: Restoration of images corrupted by mixed gaussian-impulse noise via l sub (1-l) sub (0) minimization. Pattern Recognit. 44(8), 1708–1720 (2011)CrossRefzbMATHGoogle Scholar
  38. 38.
    Xiong, B., Yin, Z.: A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process. 21(4), 1663–1675 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xu, H., Xu, J., Wu, F.: On the biased estimation of nonlocal means filter. In: International conference on multimedia computing and systems/international conference on multimedia and expo, pp. 1149–1152 (2008)Google Scholar
  40. 40.
    Yang, J.X., Wu, H.R.: Mixed gaussian and uniform impulse noise analysis using robust estimation for digital images. In: Proceedings of the 16th international conference on digital signal processing, pp. 468–472 (2009)Google Scholar
  41. 41.
    Yaroslavsky, L.P.: Digital Picture Processing. Springer, Secaucus (1985)CrossRefGoogle Scholar
  42. 42.
    Yuksel, M.: A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise. IEEE Trans. Image Process. 15(4), 928–936 (2006)CrossRefGoogle Scholar
  43. 43.
    Zhou, Y., Ye, Z., Xiao, Y.: A restoration algorithm for images contaminated by mixed gaussian plus random-valued impulse noise. J. Vis. Commun. Image Represent. 24(3), 283–294 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNortheastern University at QinhuangdaoQinhuangdaoChina
  2. 2.College of Information Science and Engineering, Northeastern UniversityShenyangChina
  3. 3.CNRS UMR 6205, LMBAUniversité de Bretagne-SudVannesFrance
  4. 4.Department of MathematicsZhongshan PolytechnicZhongshanChina

Personalised recommendations