Advertisement

Journal of Scientific Computing

, Volume 67, Issue 1, pp 20–42 | Cite as

A Mixed Finite Element Discretisation of Thin Plate Splines Based on Biorthogonal Systems

  • Bishnu P. Lamichhane
  • Stephen G. Roberts
  • Linda Stals
Article

Abstract

The thin plate spline method is a widely used data fitting technique as it has the ability to smooth noisy data. Here we consider a mixed finite element discretisation of the thin plate spline. By using mixed finite elements the formulation can be defined in-terms of relatively simple stencils, thus resulting in a system that is sparse and whose size only depends linearly on the number of finite element nodes. The mixed formulation is obtained by introducing the gradient of the corresponding function as an additional unknown. The novel approach taken in this paper is to work with a pair of bases for the gradient and the Lagrange multiplier forming a biorthogonal system thus ensuring that the scheme is numerically efficient, and the formulation is stable. Some numerical results are presented to demonstrate the performance of our approach. A preconditioned conjugate gradient method is an efficient solver for the arising linear system of equations.

Keywords

Thin plate splines Scattered data smoothing Mixed finite element method Biorthogonal system 

Mathematics Subject Classification

65D15 41A15 

Notes

Acknowledgments

We are grateful to the anonymous referees for their valuable suggestions to improve the quality of the earlier version of this work.

References

  1. 1.
    Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Altas, I., Hegland, M., Roberts, S.: Finite element thin plate splines for surface fitting. In: Computational Techniques and Applications: CTAC97, pp. 289–296 (1998)Google Scholar
  3. 3.
    Arnold, D., Brezzi, F.: Some new elements for the Reissner-Mindlin plate model. In: Boundary Value Problems for Partial Differerntial Equations and Applications, pp. 287–292. Masson, Paris (1993)Google Scholar
  4. 4.
    Boffi, D., Lovadina, C.: Analysis of new augmented lagrangian formulations for mixed finite element schemes. Numerische Mathematik 75, 405–419 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Braess, D.: Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Brenner, S., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Cheng, X., Han, W., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ciarlet, P.: The finite element method for elliptic problems. North Holland, Amsterdam (1978)Google Scholar
  10. 10.
    Ciarlet, P., Raviart, P.-A.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic Press, New York (1974)Google Scholar
  11. 11.
    Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571. Springer-Verlag, Berlin (1977)Google Scholar
  12. 12.
    Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Galántai, A.: Projectors and Projection Methods. Kluwer Academic Publishers, Dordrecht (2003)MATHGoogle Scholar
  14. 14.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  15. 15.
    Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Johnson, C., Pitkäranta, J.: Some mixed finite element methods related to reduced integration. Math. Comput. 38, 375–400 (1982)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Karper, T., Mardal, K.-A., Winther, R.: Unified finite element discretizations of coupled darcy-stokes flow. Numer. Methods Partial Differ. Equ. 25, 311–326 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kim, C., Lazarov, R., Pasciak, J., Vassilevski, P.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lamichhane, B.: Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. LAP LAMBERT Academic Publishing (2011)Google Scholar
  20. 20.
    Lamichhane, B.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 23, 5188–5197 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lamichhane, B.: Two simple finite element methods for Reissner-Mindlin plates with clamped boundary condition. Appl. Numer. Math. 72, 91–98 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lamichhane, B., Hegland, M.: A stabilised mixed finite element method for thin plate splines based on biorthogonal systems. In: McLean, W., Roberts, A.J. (eds.) Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, ANZIAM J. (2013)Google Scholar
  23. 23.
    Lamichhane, B., Roberts, S., Stals, L.: A mixed finite element discretisation of thin-plate splines. In: McLean, W., Roberts, A.J. (eds.), Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, vol. 52 of ANZIAM J, pp. C518–C534 (2011)Google Scholar
  24. 24.
    Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Roberts, S., Hegland, M., Altas, I.: Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41, 208–234 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Szyld, D.: The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42, 309–323 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wahba, G.: Spline Models for Observational Data, vol. 59 of Series in Applied Mathematic, SIAM, Philadelphia, first ed., (1990)Google Scholar
  29. 29.
    Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. vol. 17 of LNCS, vol. 17. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bishnu P. Lamichhane
    • 1
  • Stephen G. Roberts
    • 2
  • Linda Stals
    • 2
  1. 1.School of Mathematical & Physical Sciences, Mathematics Building - V127University of Newcastle, University DriveCallaghanAustralia
  2. 2.Centre for Mathematics and its Applications, Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations