Advertisement

Journal of Scientific Computing

, Volume 66, Issue 2, pp 870–887 | Cite as

The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow

  • Eric Chung
  • Bernardo Cockburn
  • Guosheng FuEmail author
Article

Abstract

We show that the staggered discontinuous Galerkin (SDG) method (Kim et al. in SIAM J Numer Anal 51:3327–3350, 2013) for the Stokes system of incompressible fluid flow can be obtained from a new hybridizable discontinuous Galerkin (HDG) method by setting its stabilization function to zero at some suitably chosen element faces and by letting it go to infinity at all the remaining others. We then show that, as a consequence, the SDG method immediately acquires three new properties all inherited from this limiting HDG method, namely, its efficient implementation (by hybridization), its superconvergence properties, and its postprocessing of the velocity. In particular, the postprocessing of the velocity is \(\varvec{H}(\mathrm {div})\)-conforming, weakly divergence-free and converges with order \(k+2\) where \(k>0\) is the polynomial degree of the approximations.

Keywords

Discontinuous Galerkin methods Hybridization Stokes flow 

Mathematics Subject Classification

65N30 65M60 35L65 

References

  1. 1.
    Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Chung, E., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77, 1887–1916 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element fitted for enforcing weak stress symmetry. Math. Comp. 79, 1331–1349 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of an HDG method for Stokes flow. Math. Comp. 80, 723–760 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Schötzau, D., Wang, J.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006). ( C. Dawson, Ed)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comp. 82, 651–671 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comp. 83, 1571–1598 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Kim, H., Chung, E., Lee, C.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Nédélec, J.-C.: Mixed finite elements in \({\bf R}^{3}\). Numer. Math. 35, 315–341 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Stenberg, R.: Some new families of finite elements for the Stokes equations. Numer. Math. 56, 827–838 (1990)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsThe Chinese University of Hong KongShatinChina
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations