Journal of Scientific Computing

, Volume 66, Issue 1, pp 435–457 | Cite as

A Spectral Analysis of Subspace Enhanced Preconditioners

  • Tao ZhaoEmail author


It is well-known that the convergence of Krylov subspace methods for solving linear system of equations depends on the spectrum of the matrix, moreover, it is widely accepted that for both symmetric and unsymmetric systems Krylov subspace methods converge faster if the spectrum of the matrix is clustered. In this paper we investigate the spectrum of the system preconditioned by deflation, coarse correction and adapted deflation preconditioners. Our analysis shows that the spectrum of the preconditioned system is highly impacted by the angle between the coarse space of the three preconditioners and the subspace spanned by the eigenvectors associated with the small eigenvalues of the matrix. Furthermore, we prove that the accuracy of the inverse of the projection matrix also impacts the spectrum of the preconditioned system. Numerical experiments confirm the theoretical analysis.


Perturbation analysis Preconditioner Domain decomposition Spectrum Coarse space 



The author would like to thank Prof. Frédéric Nataf and Prof. Xiao-Chuan Cai for their supervision and valuable suggestions. The author also thanks the referees for the helpful comments that improve the paper.


  1. 1.
    Brown, P.N., Walker, H.F.: GMRES on singular systems. SIAM J. Matrix Anal. Appl. 18, 37–51 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Efstathiou, E., Gander, M.J.: Why restricted additive Schwarz converges faster than additive Schwarz. BIT 43, 945–959 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Erlangga, Y.A., Nabben, R.: Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices. SIAM J. Matrix Anal. Appl. 30, 684–699 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Frank, J., Vuik, C.: On the construction of deflation-based preconditioners. SIAM J. Sci. Comput. 23, 442–462 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Golub, G.H., van Loan, C.F.: Matrix Comput., 3rd edn. John Hopkins University Press, Baltimore (1996)Google Scholar
  7. 7.
    Giraud, L., Gratton, S.: On the sensitivity of some spectral preconditioners. SIAM J. Matrix Anal. Appl. 27, 1089–1105 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gosselet, P., Rey, C.: On a selective reuse of Krylov subspaces in Newton–Krylov approaches for nonlinear elasticity. In: Domain Decomposition Methods in Science and Engineering, National Autonomous University of Mexico, México, pp. 419–426 (2003)Google Scholar
  9. 9.
    Havé, P., Masson, R., Nataf, F., Szydlarski, M., Xiang, H., Zhao, T.: Algebraic domain decomposition methods for highly heterogeneous problems. SIAM J. Sci. Comput. 35, C284–C302 (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hecht, F.: FreeFem++. (2014)
  11. 11.
    Kaasschieter, E.F.: Preconditioned conjugate gradients for solving singular systems. J. Comput. Appl. Math. 24, 265–275 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karypis, G., Kumar, V.: A fast and highly qualty multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Klawonn, A., Rheinbach, O.: Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results. SIAM J. Sci. Comput. 34, A459–A484 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klawonn, A., Lanser, M., Rheinbach, O.: Nonlinear FETI-DP and BDDC methods. SIAM J. Sci. Comput. 36, A737–A765 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comput. 24, 20–37 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nabben, R., Vuik, C.: a comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners. Numer. Linear Algeb. Appl. 15, 355–372 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nataf, F., Xiang, H., Dolean, V., Spillane, N.: A coarse grid space construction based on local Dirichlet to Neumann maps. SIAM J. Sci. Comput. 33, 1623–1642 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nicolaides, R.A.: Deflation of conjugate gradient with application to boundary value problem. SIAM J. Numer. Anal. 24, 355–365 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Notay, Y., Napov, A.: Further comparison of additive and multiplicative coarse grid correction. Appl. Numer. Math. 65, 53–62 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Padiy, A., Axelsson, O., Polman, B.: Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems. SIAM J. Matrix Anal. Appl. 22, 793–818 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Parks, M.L., de Sturler, E., Mackey, G., Johnson, D.D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28, 1651–1674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    St-Cyr, A., Gander, M.J., Thomas, S.J.: Optimized multiplicative, additive, and restricted additive Schwarz preconditioning. SIAM J. Sci. Comput. 29, 2402–2425 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stewart, G.W.: Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia (2001)CrossRefGoogle Scholar
  25. 25.
    Tang, J.M., Maclachlan, S.P., Nabben, R., Vuik, C.: A comparison of two-level preconditioners based on multigrid and deflation. SIAM J. Matrix Anal. Appl. 31, 1715–1739 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39, 340–370 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005)Google Scholar
  28. 28.
    van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenPeople’s Republic of China

Personalised recommendations