Advertisement

Journal of Scientific Computing

, Volume 66, Issue 1, pp 91–115 | Cite as

High Order Semi-Lagrangian Methods for the Incompressible Navier–Stokes Equations

  • Elena Celledoni
  • Bawfeh Kingsley Kometa
  • Olivier VerdierEmail author
Article

Abstract

We propose a class of semi-Lagrangian methods of high approximation order in space and time, based on spectral element space discretizations and exponential integrators of Runge–Kutta type. The methods were presented in Celledoni and Kometa (J Sci Comput 41(1):139–164, 2009) for simpler convection–diffusion equations. We discuss the extension of these methods to the Navier–Stokes equations, and their implementation using projections. Semi-Lagrangian methods up to order three are implemented and tested on various examples. The good performance of the methods for convection-dominated problems is demonstrated with numerical experiments.

Keywords

Navier–Stokes Projection Semi-Lagrangian Runge–Kutta 

Mathematics Subject Classification

54C40 14E20 46E25 20C20 

Notes

Acknowledgments

This work was supported in part by the GeNuIn project, Grant from the Research Council of Norway.

References

  1. 1.
    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35(3), 326–348 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Celledoni, E.: Eulerian and semi-Lagrangian commutator-free exponential integrators. CRM Proc. Lect. Notes 39, 77–90 (2005)MathSciNetGoogle Scholar
  7. 7.
    Celledoni, E., Kometa, B.K.: Semi-Lagrangian Runge–Kutta exponential integrators for convection dominated problems. J. Sci. Comput. 41(1), 139–164 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Celledoni, E., Kometa, B.K.: Order conditions for semi-Lagrangian Runge-Kutta exponential integrators, Preprint series: Numerics, 04/2009, Department of Mathematics, NTNU, Trondheim, Norway. http://www.math.ntnu.no/preprint/numerics/N4-2009.pdf (2009)
  9. 9.
    Celledoni, E., Kometa, B.K.: Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems. J. Comput. Phys. 230(9), 3413–3429 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Childs, P.N., Morton, K.W.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27, 553–594 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  14. 14.
    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)CrossRefGoogle Scholar
  15. 15.
    Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (to appear)Google Scholar
  17. 17.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 265–270 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133(1), 84–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element method for transitional flows in complex geometries. J. Sci. Comput. 17(1–4), 81–98 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ghia, U., Ghia, K.N., Shin, C.T.: High re-solutions for incompressible flow using the Navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefzbMATHGoogle Scholar
  21. 21.
    Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Guermond, J.L., Minev, P.D., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006). doi: 10.1016/j.cma.2005.10.010 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration, Second ed., Springer Series in Computational Mathematics, vol. 31, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)Google Scholar
  26. 26.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Second ed., Springer Series in Computational Mathematics. Springer, Berlin (1996)CrossRefGoogle Scholar
  27. 27.
    Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit–explicit high order Runge–Kutta methods to discontinuous-Galerkin schemes. J. Comput. Phys. 225(2), 1753–1781 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kometa, B.K.: Semi-Lagrangian methods and new integration schemes for convection-dominated problems, PhD thesis at NTNU, ISSN 1503–8181; 2011:270, Norwegian University of Science and Technology, Department of Mathematical Sciences, http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15729 (2011)
  30. 30.
    Kvarving, A.M.: Splitting schemes for the unsteady Stokes equations: a comparison study, Preprint series: Numerics, 05/2010, Department of Mathematics, NTNU, Trondheim, Norway, http://www.math.ntnu.no/preprint/numerics/N5-2010.pdf (2010)
  31. 31.
    Maday, Y., Patera, A.T., Rønquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5(4), 263–292 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Morton, K.W.: Generalised Galerkin methods for hyperbolic problems. Computer Methods Appl Mech Eng 52, 847–871 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations, Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1991)Google Scholar
  34. 34.
    Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefzbMATHGoogle Scholar
  37. 37.
    Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elena Celledoni
    • 1
  • Bawfeh Kingsley Kometa
    • 1
  • Olivier Verdier
    • 1
    Email author
  1. 1.Institutt for matematiske fagNTNUTrondheimNorway

Personalised recommendations