Journal of Scientific Computing

, Volume 64, Issue 3, pp 818–836 | Cite as

A Posteriori Estimates for a Natural Neumann–Neumann Domain Decomposition Algorithm on a Unilateral Contact Problem



In this paper we present an error estimator for unilateral contact problems solved by a Neumann–Neumann Domain Decomposition algorithm. This error estimator takes into account both the spatial error due to the finite element discretization and the algebraic error due to the domain decomposition algorithm. To differentiate specifically the contribution of these two error sources to the global error, two quantities are introduced: a discretization error indicator and an algebraic error indicator. The effectivity indices and the convergence of both the global error estimator and the error indicators are shown on several examples.


Error estimation Domain decomposition algorithm Contact problem Discretization error Algebraic error 


  1. 1.
    Kikuchi, N., Oden, J.T. (eds.): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)MATHGoogle Scholar
  2. 2.
    Wriggers, P.: Finite element algorithms for contact problems. Arch. Comput. Methods Eng. 2, 1–49 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Haslinger, J., Hlavacek, I., Necas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, part 2. Elsevier, North Holland (1996)Google Scholar
  4. 4.
    Babus̆ka, I., Rheinboldt, W.C.: A posteriori estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)CrossRefGoogle Scholar
  5. 5.
    Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and application. SIAM J. Numer. Anal. 20(3), 485–509 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Wriggers, P., Scherf, O.: Different a posteriori error estimators and indicators for contact problems. Math. Comput. Model. 28(4–8), 437–447 (1997)MathSciNetGoogle Scholar
  8. 8.
    Coorevits, P., Hild, P., Pelle, J.P.: Posteriori error estimation for unilateral contact with matching and non matching meshes. Comput. Methods Appl. Mech. Eng. 186, 65–83 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Rieger, A., Wriggers, P.: Adaptive methods for frictionless contact problems. Comput. Struct. 79, 2197–2208 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Louf, F., Combe, J.P., Pelle, J.P.: Constitutive error estimator for the control of contact problems involving friction. Comput. Struct. 81, 1759–1772 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Louf, F., Gallimard, L., Pelle, J.P.: Un estimateur d’erreur en relation de comportement pour les problèmes d’impact. Revue Européenne de Mécanique numérique 15(6), 699–728 (2006)CrossRefMATHGoogle Scholar
  12. 12.
    Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195, 1252–1274 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Wohlmuth, B.I.: An a posteriori error estimator for two-body contact problems on non-matching meshes. J. Sci. Comput. 33(1), 25–45 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gallimard, L., Sassi, T.: A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem. Comput. Struct. 88, 879–888 (2010)CrossRefGoogle Scholar
  15. 15.
    Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP : a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50(7), 1523–1544 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mandel, J.: Balancing domain decomposition. Commun. Appl. Numer. Methods Eng. 9, 233–241 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Parret-Fraud, A., Rey, C., Gosselet, P., Feyel, F.: Fast estimation of discretization error for FE problems solved by domain decomposition. Comput. Methods Appl. Mech. Eng. 199(49–52), 3315–3323 (2010)CrossRefGoogle Scholar
  18. 18.
    Bayada, G., Sabil, J., Sassi, T.: A Neumann–Neumann Domain Decomposition algorithm for the Signorini problem. Appli. Math. Lett. 17, 1153–1159 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hasslinger, J., Kucera, R., Sassi, T.: A domain decomposition algorithm for contact problems: analysis and implementation. Math. Model. Nat. Phenom. 4(1), 123–146 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    De Saxcé, G.: A generalisation of Fenchel’s inequality and its applications to the constitutive laws. C.R. Acad. Sci. Paris Série II 314, 125–129 (1992)MATHGoogle Scholar
  21. 21.
    Prager, W., Synge, J.L.: Approximation in elasticity based on the concept of functions space. Q. Appl. Math. 5, 261–269 (1947)MathSciNetGoogle Scholar
  22. 22.
    Gallimard, L.: A constitutive relation error estimator based on traction-free recovery of the equilibrated stress. Int. J. Numer. Methods Eng. 78, 460–482 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gallimard, L., Ladevèze, P., Pelle, J.P.: Error estimation and time–space parameters optimization for FEM non linear computation. Comput. Struct. 64(1–4), 145–156 (1997)CrossRefMATHGoogle Scholar
  24. 24.
    Ladevèze, P., Moes, N.: Adaptive control for finite element analysis in plasticity. Comput. Struct. 73, 45–60 (1999)CrossRefMATHGoogle Scholar
  25. 25.
    Pelle, J.P., Ryckelynck, D.: An efficient adaptive strategy to master the global quality of viscoplastic analysis. Comput. Struct. 78(1–3), 169–183 (2000)CrossRefGoogle Scholar
  26. 26.
    Dureisseix, D., Farhat, C.: A numerically scalable domain decomposition method for the solution of frictionless contact problems. Int. J. Numer. Methods Eng. 50(12), 2643–2666 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Dureisseix, D., Farhat, C.: A FETI-based algorithm for the iterative solution of unilateral contact problems. In: 4th Euromech Solids Mechanics Conference—Metz (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LMNO – Université de Caen Basse-NormandieCaen CedexFrance
  2. 2.LEMEUniversité Paris Ouest Nanterre-La DéfenseVille d’AvrayFrance

Personalised recommendations