Journal of Scientific Computing

, Volume 64, Issue 2, pp 341–367 | Cite as

A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications

  • Ali Safdari-Vaighani
  • Alfa Heryudono
  • Elisabeth LarssonEmail author


Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computational cost associated with the dense linear systems that arise. Therefore, research is currently directed towards localized RBF approximations such as the RBF partition of unity collocation method (RBF–PUM) proposed here. The objective of this paper is to establish that RBF–PUM is viable for parabolic PDEs of convection–diffusion type. The stability and accuracy of RBF–PUM is investigated partly theoretically and partly numerically. Numerical experiments show that high-order algebraic convergence can be achieved for convection–diffusion problems. Numerical comparisons with finite difference and pseudospectral methods have been performed, showing that RBF–PUM is competitive with respect to accuracy, and in some cases also with respect to computational time. As an application, RBF–PUM is employed for a two-dimensional American option pricing problem. It is shown that using a node layout that captures the solution features improves the accuracy significantly compared with a uniform node distribution.


Collocation method Meshfree Radial basis function Partition of unity RBF–PUM Convection–diffusion equation American option 

Mathematics Subject Classification

MSC 65M70 MSC 35K15 



The authors would like to thank Victor Shcherbakov, Uppsala University who provided the FD-operator splitting implementation for the American option pricing problem.


  1. 1.
    Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997). doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  2. 2.
    Ballestra, L.V., Pacelli, G.: Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng. Anal. Bound. Elem. 35(9), 1075–1084 (2011). doi: 10.1016/j.enganabound.2011.02.008 zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ballestra, L.V., Pacelli, G.: A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng. Anal. Bound. Elem. 36(11), 1546–1554 (2012). doi: 10.1016/j.enganabound.2012.04.011 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ballestra, L.V., Pacelli, G.: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J. Econ. Dyn. Control 37(6), 1142–1167 (2013). doi: 10.1016/j.jedc.2013.01.013 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9(1), 69–107 (1996). doi: 10.1093/rfs/9.1.69 CrossRefGoogle Scholar
  6. 6.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)zbMATHCrossRefGoogle Scholar
  7. 7.
    Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13(3), 345–382 (2003). doi: 10.1111/1467-9965.00020 zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (1996)Google Scholar
  9. 9.
    Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297–338 (2002). doi: 10.1198/073500102288618397 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fasshauer, G., Khaliq, A.Q.M., Voss, D.A.: Using meshfree approximation for multi asset American options. J. Chin. Inst. Eng. 27(4), 563–571 (2004). doi: 10.1080/02533839.2004.9670904
  11. 11.
    Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6, pp. xviii+500. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)Google Scholar
  12. 12.
    Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. VIII, ser. 5, pp. 3–30 (1956)Google Scholar
  13. 13.
    Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi: 10.1137/09076756X zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi: 10.1016/j.camwa.2007.01.028 zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691–1704 (1980). doi: 10.1002/nme.1620151110 zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84–90 (1960). doi: 10.1007/BF01386213 zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hon, Y.C., Mao, X.Z.: A radial basis function method for solving options pricing models. J. Financ. Eng. 8, 31–49 (1999)Google Scholar
  18. 18.
    In’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303–320 (2010)Google Scholar
  19. 19.
    Ito, K., Toivanen, J.: Lagrange multiplier approach with optimized finite difference stencils for pricing American options under stochastic volatility. SIAM J. Sci. Comput. 31(4), 2646–2664 (2009). doi: 10.1137/07070574X zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Janson, S., Tysk, J.: Feynman–Kac formulas for Black–Scholes-type operators. Bull. Lond. Math. Soc. 38(2), 269–282 (2006). doi: 10.1112/S0024609306018194 zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000). doi: 10.1137/S0036142999355921.
  22. 22.
    Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48(8), 1086–1101 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  24. 24.
    Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005). doi: 10.1016/j.camwa.2005.01.010 zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Larsson, E., Gomes, S., Heryudono, A., Safdari-Vaighani, A.: Radial basis function methods in computational finance. In: Proceedings of the CMMSE 2013, p. 12, Almería, Spain (2013)Google Scholar
  26. 26.
    Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for partial differential equations (2015, in preparation)Google Scholar
  27. 27.
    Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi: 10.1137/120899108 zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    McLain, D.H.: Two dimensional interpolation from random data. Comput. J. 19(2), 178–181 (1976). doi: 10.1093/comjnl/19.2.178 zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1–2), 125–144 (1976). doi: 10.1016/0304-405X(76)90022-2 zbMATHCrossRefGoogle Scholar
  30. 30.
    Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Financ. 5, 69–97 (2002)Google Scholar
  31. 31.
    Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math. 222(1), 3–16 (2008). doi: 10.1016/ zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Persson, J., von Sydow, L.: Pricing American options using a space–time adaptive finite difference method. Math. Comput. Simulat. 80(9), 1922–1935 (2010). doi: 10.1016/j.matcom.2010.02.008
  33. 33.
    Pettersson, U., Larsson, E., Marcusson, G., Persson, J.: Improved radial basis function methods for multi-dimensional option pricing. J. Comput. Appl. Math. 222(1), 82–93 (2008). doi: 10.1016/ zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578–1597 (2011). doi: 10.1093/imanum/drq020 zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Reddy, S.C., Trefethen, L.N.: Stability of the method of lines. Numer. Math. 62(2), 235–267 (1992). doi: 10.1007/BF01396228 zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010). doi: 10.1007/s10444-008-9089-0 zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014). doi: 10.1007/s00365-013-9211-5
  38. 38.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference (ACM ‘68), pp. 517–524. ACM, New York, NY (1968)Google Scholar
  39. 39.
    Tavella, D., Randall, C.: Pricing Financial Instruments. Wiley, New York (2000)Google Scholar
  40. 40.
    Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)Google Scholar
  41. 41.
    Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995). doi: 10.1007/BF02123482 zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Approximation Theory X (St. Louis, MO, 2001), pp. 473–483. Vanderbilt University Press, Nashville, TN (2002)Google Scholar
  43. 43.
  44. 44.
    Wu, Z., Hon, Y.C.: Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Eng. Anal. Bound. Elem. 27, 73–79 (2003). doi: 10.1016/S0955-7997(02)00083-8 zbMATHCrossRefGoogle Scholar
  45. 45.
    Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199–218 (1998). doi: 10.1016/S0377-0427(98)00037-5 zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ali Safdari-Vaighani
    • 1
  • Alfa Heryudono
    • 2
  • Elisabeth Larsson
    • 3
    Email author
  1. 1.Department of MathematicsAllameh Tabataba’i UniversityTehranIran
  2. 2.Department of MathematicsUniversity of Massachusetts DartmouthDartmouthUSA
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations