Advertisement

Journal of Scientific Computing

, Volume 63, Issue 3, pp 799–819 | Cite as

Computing Interacting Multi-fronts in One Dimensional Real Ginzburg Landau Equations

  • Tasos RossidesEmail author
  • David J. B. Lloyd
  • Sergey Zelik
Article

Abstract

We develop an efficient and robust numerical scheme to compute multi-fronts in one-dimensional real Ginzburg–Landau equations that range from well-separated to strongly interacting and colliding. The scheme is based on the global centre-manifold reduction where one considers an initial sum of fronts plus a remainder function (not necessarily small) and applying a suitable projection based on the neutral eigenmodes of each front. Such a scheme efficiently captures the weakly interacting tails of the fronts. Furthermore, as the fronts become strongly interacting, we show how they may be added to the remainder function to accurately compute through collisions. We then present results of our numerical scheme applied to various real Ginzburg Landau equations where we observe colliding fronts, travelling fronts and fronts converging to bound states. Finally, we discuss how this numerical scheme can be extended to general PDE systems and other multi-localised structures.

Keywords

Numerical scheme Computing localised states Fronts interaction  Real Ginzburg Landau equation Projection method 

References

  1. 1.
    Akhmediev, Nail, Ankiewicz, Adrian: Solitons: Nonlinear Pulses and Beams, vol. 4. Chapman & Hall, London (1997)Google Scholar
  2. 2.
    Ascher, U.M., Russell, R.D. (eds.): Numerical Boundary Value ODEs, volume 5 of Progress in Scientific Computing. Birkhäuser Boston Inc., Boston, MA (1985)Google Scholar
  3. 3.
    Bär, M., Eiswirth, M., Rotermund, H.-H., Ertl, G.: Solitary-wave phenomena in an excitable surface reaction. Phys. Rev. Lett. 69, 945–948 (1992)CrossRefGoogle Scholar
  4. 4.
    Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Yu, A., Oldeman, B.E., Sandstede B.: Auto07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Technical report, Concordia University, Department of Computer Science, Montreal, Canada. http://www.dynamicalsystems.org/ (2007)
  5. 5.
    Eckmann, J.-P., Rougemont, J.: Coarsening by Ginzburg–Landau dynamics. Commun. Math. Phys. 199(2), 441–470 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Ei, S.-I.: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dyn. Differ. Equ. 14(1), 85–137 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Friedman, M.J., Doedel, E.J.: Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28(3), 789–808 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gorshkov, K.A., Ostrovsky, L.A., Papko, V.V., Pikovsky, A.S.: On the existence of stationary multisolitons. Phys. Lett. A 74(3–4), 177–179 (1979)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)Google Scholar
  10. 10.
    Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice Hall, Englewood Cliffs, 1989, 1 (1989)Google Scholar
  11. 11.
    Merkin, J.H., Petrov, V., Scott, S.K., Showalter, K.: Wave-induced chemical chaos. Phys. Rev. Lett. 76, 546–549 (Jan 1996)Google Scholar
  12. 12.
    Murray, J.D.: Mathematical Biology, 3rd edn. I, volume 17 of Interdisciplinary Applied Mathematics. An Introduction. Springer, New York (2002)Google Scholar
  13. 13.
    Nishiura, Y., Teramoto, T., Ueda, K.: Scattering of traveling spots in dissipative systems. Chaos Interdiscip. J. Nonlinear Sci. 15(4), 047509 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nishiura, Y., Teramoto, T., Ueda, K.-I.: Scattering and separators in dissipative systems. Phys. Rev. E 67, 056210 (May 2003)Google Scholar
  15. 15.
    Nishiura, Y., Ueyama, D.: A skeleton structure of self-replicating dynamics. Phys. D Nonlinear Phenom. 130(1), 73–104 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Oldeman, B.E., Champneys, A.R., Krauskopf, B.: Homoclinic branch switching: a numerical implementation of Lin’s method. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(10), 2977–2999 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rougemont, J.: Dynamics of kinks in the Ginzburg–Landau equation: approach to a metastable shape and collapse of embedded pairs of kinks. Nonlinearity 12(3), 539–554 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sandstede, B., Jones, C.K.R.T., Alexander, J.C.: Existence and stability of \(N\)-pulses on optical fibers with phase-sensitive amplifiers. Phys. D 106(1–2), 167–206 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sandstede, B.: Convergence estimates for the numerical approximation of homoclinic solutions. IMA J. Numer. Anal. 17(3), 437–462 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Sandstede, B.: Stability of travelling waves. Handb. Dyn. Syst. 2, 983–1055 (2002)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Scheel, A., Wright, J.D.: Colliding dissipative pulses-the shooting manifold. J. Differ. Equ. 245(1), 59–79 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York (1994)zbMATHGoogle Scholar
  23. 23.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). (Dedicated to C. William Gear on the occasion of his 60th birthday)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Smith, G.D.: Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon Press, Oxford (1978)zbMATHGoogle Scholar
  25. 25.
    Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, volume 140 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI. Translated from the Russian manuscript by James F. Heyda (1994)Google Scholar
  26. 26.
    Yew, A.C., Champneys, A.R., McKenna, P.J.: Multiple solitary waves due to second-harmonic generation in quadratic media. J. Nonlinear Sci. 9(1), 33–52 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Zelik, S., Mielke, A.: Multi-pulse evolution and space-time chaos in dissipative systems. Mem. Am. Math. Soc. 198(925), vi+97 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tasos Rossides
    • 1
    Email author
  • David J. B. Lloyd
    • 1
  • Sergey Zelik
    • 1
  1. 1.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations