Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

  • 277 Accesses

  • 3 Citations


An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

  2. 2.

    Brenner, P., Crouzeix, M., Thomée, V.: Single step methods for inhomogeneous linear differential equations. RAIRO Anal. Numer. 16, 5–26 (1982)

  3. 3.

    Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

  4. 4.

    Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge–Kutta methods. BIT 41, 504–514 (2001)

  5. 5.

    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I—Nonstiff Problems, Springer Series Comput. Math. vol. 8, 2nd edn. Springer, Berlin (1993)

  6. 6.

    Hundsdorfer, W., Mozartova, A., Savcenco, V.: Monotonicity conditions for multirate and partitioned explicit Runge–Kutta schemes. In: Ansorge R., et al. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. NNFM, vol. 120, pp. 177–195. Springer, Berlin (2013)

  7. 7.

    Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

  8. 8.

    Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Advection-Diffusion-Reaction Equations. Springer Series Comput. Math., vol. 33. Springer, Berlin (2003)

  9. 9.

    Ketcheson, D.I., Macdonald, C.B., Ruuth, S.J.: Spatially partitioned embedded Runge–Kutta methods. SIAM J. Numer. Anal. 51, 2887–2910 (2013)

  10. 10.

    Mathew, T.P., Polyakov, P.L., Russo, G., Wang, J.: Domain decomposition operator splittings for the solution of parabolic equations. SIAM J. Sci. Comput. 19, 912–932 (1998)

  11. 11.

    Osher, S., Sanders, R.: Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comput. 41, 321–336 (1983)

  12. 12.

    Portero, L., Jorge, J.C., Bujanda, B.: Avoiding order reduction of fractional step Runge–Kutta discretizations for linear time dependent oefficient parabolic problems. Appl. Numer. Math. 48, 409–424 (2004)

  13. 13.

    Portero, L., Bujanda, B., Jorge, J.C.: A combined fractional step domain decomposition method for the numerical integration of parabolic problems. In: Wyrzykowski R., et al. (eds.) Proceedings PPAM2003, LNCS, vol. 3019, pp. 1034–1041. Springer, Berlin (2004)

  14. 14.

    Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)

  15. 15.

    Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge–Kutta schemes for advection equations. J. Comput. Appl. Math. 226, 345–357 (2009)

  16. 16.

    Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Numerical solution of multiscale problems in atmospheric modeling. Appl. Numer. Math. 62, 1531–1543 (2012)

  17. 17.

    Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

  18. 18.

    Tang, H.-Z., Warnecke, G.: High resolution schemes for conservation laws and convection–diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

  19. 19.

    Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT Numer. Math. 49, 449–473 (2009)

Download references


This paper originated from work of W. H. with Anna Mozartova and Valeriu Savcenco. The contributions of Mozartova and Savcenco, on the design of multirate methods and monotonicity properties of these methods, are contained in [6]. They are thanked for helpful comments on preliminary convergence results for first-order methods.

Author information

Correspondence to Willem Hundsdorfer.

Additional information

This work has been supported by Award No. FIC/2010/05 from King Abdullah University of Science and Technology (KAUST).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hundsdorfer, W., Ketcheson, D.I. & Savostianov, I. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws. J Sci Comput 63, 633–653 (2015) doi:10.1007/s10915-014-9906-1

Download citation


  • Multirate methods
  • Partitioned Runge–Kutta methods
  • Conservation
  • Stability
  • Convergence

Mathematics Subject Classification

  • 65L06
  • 65M06
  • 65M20