Advertisement

Journal of Scientific Computing

, Volume 63, Issue 2, pp 374–409 | Cite as

Efficient Solution Techniques for a Finite Element Thin Plate Spline Formulation

  • Linda Stals
Article

Abstract

We present a new technique for solving the saddle point problem arising from a finite element based thin plate spline formulation. The solver uses the Sherman–Morrison–Woodbury formula to divide the domain into different regions depending on the properties of the data projection matrix. We analyse the conditioning of the resulting system on certain data distributions and use the results to develop effective preconditioners. We show our approach is efficient for a wide range of parameters by testing it on a number of different examples. Numerical results are given in one, two and three dimensions.

Keywords

Mixed finite elements Thin plate splines Saddle point problems Conditioning of matrices 

Mathematics Subject Classification

65M55 15A06 15A12 65D07 65D10 

Notes

Acknowledgments

The authour would like to thank the anonymous referees for their valuable comments. The time and care they have taken in reviewing the paper is much appreciated.

References

  1. 1.
    Axelsson, O., Lindskog, G.: On the rate of convergence of the preconditioned conjugate gradient method. Numerische Mathematik 48(5), 499–523 (1986). doi: 10.1007/BF01389448 CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Wavelets, Multilevel Methods and Elliptic PDEs, pp. 1–37. Oxford University Press, Oxford (1997)Google Scholar
  3. 3.
    Beatson, R., Newsam, G.: Fast evaluation of radial basis functions: I. Computers & Mathematics with Applications 24(12), 7–19 (1992). doi: 10.1016/0898-1221(92)90167-G. http://www.sciencedirect.com/science/article/pii/089812219290167G
  4. 4.
    Beatson, R.K., Light, W.A., Billings, S.: Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput. 22(5), 1717–1740 (2000). doi: 10.1137/S1064827599361771 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: moment-based methods. SIAM J. Sci. Comput. 19(5), 1428–1449 (1998). doi: 10.1137/S1064827595293569 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Beatson, R.K., Powell, M.J.D., Tan, A.M.: Fast evaluation of polyharmonic splines in three dimensions. IMA J. Numer. Anal. 27, 427–450 (2006). doi: 10.1093/imanum/drl027 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benzi, M., Wathen, A.J.: Some preconditioning techniques for saddle point problems. In: Model order reduction: theory, research aspects and applications, Math. Ind., vol. 13, pp. 195–211. Springer, Berlin (2008). doi: 10.1007/978-3-540-78841-6_10
  9. 9.
    Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalized multiquadrics in \(\backslash \text{ rr }\,\hat{\,}\,\backslash \)protectn. Siam J. Sci. Comput. 23(5), 1549–1571 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1977). http://www.springerlink.com/content/g27671q701166031/
  11. 11.
    Hackbusch, W.: Elliptic Differential Equations, Springer Series in Computational Mathematics: Theory and Numerical Treatment, vol. 18. Springer, Berlin (1992)CrossRefGoogle Scholar
  12. 12.
    Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18(3), 1059–1076 (1989). http://www.tandfonline.com/toc/lssp20/18/3
  13. 13.
    Jennings, A.: Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method. IMA J. Appl. Math. 20(1), 61–72 (1977). doi: 10.1093/imamat/20.1.61. http://imamat.oxfordjournals.org/content/20/1/61.abstract
  14. 14.
    Lu, L.Z., Pearce, C.E.M.: Some new bounds for singular values and eigenvalues of matrix products. Ann. Oper. Res. 98, 141–148 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Riedel, K.S.: A Sherman Morrison Woodbury identity for rank augmenting matrices with application to centering. SIAM J. Math. Anal. 12(1), 80–95 (1991)Google Scholar
  16. 16.
    Roberts, S., Hegland, M., Altas, I.: Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41(1), 208–234 (2003). http://epubs.siam.org/sinum/resource/1/sjnaam/v41/i1
  17. 17.
    Roberts, S., Stals, L.: Discrete thin plate spline smoothing in 3D. In: J. Crawford, A.J. Roberts (eds.) In: Proceedings of 11th Computational Techniques and Applications Conference CTAC-2003, vol. 45, pp. C646–C659 (2004). http://anziamj.austms.org.au/V45/CTAC2003/Rob2/home.html (July 18, 2004)
  18. 18.
    Stals, L., Roberts, S.: Verifying convergence rates of discrete thin-plate splines in 3D. In: R. May, A.J. Roberts (eds.) In: Proceedings of 12th Computational Techniques and Applications Conference CTAC-2002, vol. 46, pp. C515–C529 (2005). http://anziamj.austms.org.au/V46/CTAC2004/home.html
  19. 19.
    Stals, L., Roberts, S.: Smoothing large data sets using discrete thin plate splines. Comput. Vis. Sci. 9, 185–195 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Stals, L., Roberts, S.: Preconditioners for low order thin plate spline approximations. In: Barth, T., Griebel, M., Keyes, D., Nieminen, R., Roose, D., Schlick, T. (eds.) Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computational Science and Engineering, vol. 60, pp. 639–646. Springer, Berlin (2008)CrossRefGoogle Scholar
  21. 21.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, Waltham (2001)zbMATHGoogle Scholar
  22. 22.
    Wahba, G.: Spline Models for Observational Data, Series in Applied Mathematics, vol. 59, 1st edn. SIAM, Philadelphia (1990)CrossRefGoogle Scholar
  23. 23.
    Wang, B., Xi, B.: Some inequalities for singular values of matrix products. Linear Algebra Appl. 264, 109–115 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Wendland, H.: Computational aspects of radial basis function approximation. In: K. Jetter, M.D. Buhmann, W. Haussmann, R. Schaback, J. Stckler (eds.) In: Topics in Multivariate Approximation and Interpolation, Studies in Computational Mathematics, vol. 12, pp. 231–256. Elsevier (2006). doi: 10.1016/S1570-579X(06)80010-8. http://www.sciencedirect.com/science/article/pii/S1570579X06800108
  25. 25.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations