Skip to main content
Log in

KdV Equation and Computations of Solitons: Nonlinear Error Dynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Argyris, J., Haase, M.: An engineer’s guide to soliton phenomena: application of the finite element method. Comput. Methods Appl. Mech. Eng. 61(1), 71–122 (1987). doi:10.1016/0045-7825(87)90117-4

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., McLachlan, R.I.: Multisymplectic box schemes and the Korteweg-de Vries equation. Appl. Numer. Math. 48(3–4), 255–269 (2004). doi:10.1016/j.apnum.2003.09.002. http://linkinghub.elsevier.com/retrieve/pii/S0168927403001545

  3. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge, MA (1989)

    Book  MATH  Google Scholar 

  4. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 289(1361), 373–404 doi:10.1098/rsta.1978.0064. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

  5. Gardner, C., Greene, J., Kruskal, M., Miura, R.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967). doi:10.1103/PhysRevLett.19.1095

  6. Hasegawa, A.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171 (1973). doi:10.1063/1.1654847. http://link.aip.org/link/?APL/23/171/1&Agg=doi

  7. Korteweg, D., Vries, G.D.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5, 37–41 (1895). doi:10.1080/14786449508620739

    Google Scholar 

  8. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21(5), 467–490 (1968). doi:10.1002/cpa.3160210503

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, J., Visbal, M.R.: High-order compact schemes for nonlinear dispersive waves. J. Sci. Comput. 26(1), 1–23 (2006). doi:10.1007/s10915-004-4797-1

    Article  MathSciNet  Google Scholar 

  10. Miura, R.M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9(8), 1202 (1968). doi:10.1063/1.1664700. http://link.aip.org/link/?JMP/9/1202/1&Agg=doi

  11. Russell, J.S.: Report on waves. In: 14th Meeting of the British Association for the Advancement of Science, vol. 311, p. 390 (1844)

  12. Seeger, A., Donth, H., Kochendörfer, A.: Theorie der versetzungen in eindimensionalen atomreihen. Zeitschrift für Physik 134(2), 173–193 (1953). doi:10.1007/BF01329410

    Article  MATH  Google Scholar 

  13. Sengupta, T.K.: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press, Cambridge, MA (2013)

    Book  Google Scholar 

  14. Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21(2), 225–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226(2), 1211–1218 (2007). doi:10.1016/j.jcp.2007.06.001. http://linkinghub.elsevier.com/retrieve/pii/S0021999107002537

  16. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192(2), 677–694 (2003). http://www.sciencedirect.com/science/article/pii/S0021999103004133

  17. Sengupta, T.K., Ganerwal, G., Dipankar, A.: High accuracy compact schemes and Gibbs’ phenomenon. J. Sci. Comput. 21(3), 253–268 (2004). doi:10.1007/s10915-004-1317-2

    Article  MATH  MathSciNet  Google Scholar 

  18. Sengupta, T.K., Sircar, S.K., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26(2), 151–193 (2006). doi:10.1007/s10915-005-4928-3

    Article  MATH  MathSciNet  Google Scholar 

  19. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55(2), 231–253 (1984). doi:10.1016/0021-9991(84)90004-4

    Article  MATH  MathSciNet  Google Scholar 

  20. Vliegenthart, A.C.: On finite-difference methods for the Korteweg-de Vries equation. J. Eng. Math. 5(2), 137–155 (1971). doi:10.1007/BF01535405

    Article  MATH  MathSciNet  Google Scholar 

  21. Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 283(1393), 238–261 (1965). doi:10.1098/rspa.1965.0019. http://rspa.royalsocietypublishing.org/content/283/1393/238

  22. Yan, J., Shu, C.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002). doi:10.1137/S0036142901390378

    Article  MATH  MathSciNet  Google Scholar 

  23. Zabusky, N.: Fermi–Pasta–Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics. Chaos Interdiscip. J. Nonlinear Sci. 15(1) (2005). doi:10.1063/1.1861554. http://www.ncbi.nlm.nih.gov/pubmed/15836279

  24. Zabusky, N., Kruskal, M.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial state. Phys. Rev. Lett. 15(6), 240–243 (1965). http://staff.ustc.edu.cn/jzheng/PhysRevLett_15_0240.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin, V.M., Saurabh, K., Sriramkrishnan, M. et al. KdV Equation and Computations of Solitons: Nonlinear Error Dynamics. J Sci Comput 62, 693–717 (2015). https://doi.org/10.1007/s10915-014-9875-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9875-4

Keywords

Navigation