Journal of Scientific Computing

, Volume 62, Issue 1, pp 25–52 | Cite as

A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows

  • Nils Gerhard
  • Francesca Iacono
  • Georg May
  • Siegfried Müller
  • Roland Schäfer


Multiresolution-based mesh adaptivity using biorthogonal wavelets has been quite successful with finite volume solvers for compressible fluid flow. The extension of the multiresolution-based mesh adaptation concept to high-order discontinuous Galerkin discretization can be performed using multiwavelets, which allow for higher-order vanishing moments, while maintaining local support. An implementation for scalar one-dimensional conservation laws has already been developed and tested. In the present paper we extend this strategy to systems of equations, in particular to the equations governing inviscid compressible flow.


Grid adaptivity Multiresolution analysis High-order methods Multiwavelet Discontinuous Galerkin  Conservation laws 



Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 and in the frameworks of the Collaborative Research Center SFB-TR-40 and the Research Unit FOR 1779, and by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under Grant number FA8655-08-1-3060, is gratefully acknowledged.


  1. 1.
    Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246–262 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, NY (2007)Google Scholar
  4. 4.
    Archibald, R., Fann, G., Shelton, W.: Adaptive discontinuous Galerkin methods in multiwavelets bases. Appl. Numer. Math. 61, 879–890 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bacry, E., Mallat, S., Papanicolaou, G.: A wavelet based space-time adaptive numerical method for partial differential equations. Math. Model. Numer. Anal. 26, 793–834 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197, 460–490 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39, 143–154 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, J., Shi, Z.: Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws. Acta Mech. Sinica 22, 84–92 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–244 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  15. 15.
    Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dahmen, W.: Wavelet methods for PDEs—some recent developments. J. Comput. Appl. Math. 128, 133–185 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gerhard, N., Müller, S.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case. Comput. Appl. Math. (2014). doi: 10.1007/s40314-014-0134-y
  19. 19.
    Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Fey, M., Jeltsch, R (eds.) Hyperbolic Problems: Theory, Numerics, applications, pp. 385–394. Birkhäuser (1999)Google Scholar
  20. 20.
    Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)Google Scholar
  21. 21.
    Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153–192 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Iacono, F., May, G., Müller, S., Schäfer, R.: A discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. In: 49th AIAA Aerospace Sciences Meeting, 2011–0200 (2011)Google Scholar
  27. 27.
    Iacono, F., May, G., Müller, S., Schäfer, R.: An adaptive multiwavelet-based DG discretization for compressible fluid flow. In: Kuzmin, A. (ed.) ICCFD 2010, Proceedings of 6th International Conference on Computational Fluid Dynamics, pp. 813–822. Springer, Berlin (2011)Google Scholar
  28. 28.
    Iacono, F.: High-order methods for convection-dominated nonlinear problems using multilevel techniques. Ph.D. thesis, RWTH Aachen University (2011)Google Scholar
  29. 29.
    Jouhaud, J.C., Montagnac, M., Tourrette, L.: A multigrid adaptive mesh refinement strategy for 3D aerodynamic design. Int. J. Numer. Methods Fluids 47, 367–385 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  31. 31.
    Levy, D., Puppo, G., Russo, G.: A fourth order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefzbMATHGoogle Scholar
  33. 33.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dy. 4, 101–104 (1969)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Müller, S.: Adaptive multiresolution schemes. In: Herbin, R., Kröner, D. (eds.) Proceedings of Finite Volumes for Complex Applications III, June, 24–28, 2002, Porquerolles (France), pp. 119–136. Hermes Penton Science (2002)Google Scholar
  35. 35.
    Müller, S.: Multiresolution schemes for conservation laws. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 379–408. Springer, Berlin (2009)Google Scholar
  36. 36.
    Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  37. 37.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, chap. 11, pp. 409–539. Springer, Berlin (2009)Google Scholar
  38. 38.
    Richtmyer, R.D.: Taylor instability in a shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen University (2011)Google Scholar
  40. 40.
    Shelton, A.B.: A multi-resolution discontinuous Galerkin method for unsteady compressible flows. Ph.D. thesis, Georgia Institute of Technology (2008)Google Scholar
  41. 41.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Strela, V.: Multiwavelets: theory and applications. Ph.D. thesis, Massachussettes Institute of Technology (1996)Google Scholar
  44. 44.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  45. 45.
    Vuik, M.: Limiting and shock detection for discontinuous Galerkin solutions using multiwavelets. Master’s thesis, Delft Institute of Applied Mathematics, Delft University of Technology (2012)Google Scholar
  46. 46.
    Wang, Z.J. (ed.): Adaptive High-Order Methods in Computational Fluid Dynamics. World Scientific Publishing Company, Singapore (2011)Google Scholar
  47. 47.
    Woodward, P.: Trade-offs in designing explicit hydrodynamical schemes for vector computers. In: Rodrigue, G. (ed.) Parallel Computations, pp. 153–172. Academic Press, London (1982)Google Scholar
  48. 48.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Yee, H., Sandham, N., Djomehri, M.: Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nils Gerhard
    • 1
  • Francesca Iacono
    • 2
  • Georg May
    • 2
  • Siegfried Müller
    • 1
  • Roland Schäfer
    • 1
  1. 1.Institut für Geometrie und Praktische MathematikRWTH Aachen UniversityAachenGermany
  2. 2.Aachen Institute for Advanced Study in Computational Engineering ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations