Advertisement

Journal of Scientific Computing

, Volume 61, Issue 3, pp 604–628 | Cite as

A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem

  • André Massing
  • Mats G. Larson
  • Anders Logg
  • Marie E. Rognes
Article

Abstract

We present a novel finite element method for the Stokes problem on fictitious domains. We prove inf-sup stability, optimal order convergence and uniform boundedness of the condition number of the discrete system. The finite element formulation is based on a stabilized Nitsche method with ghost penalties for the velocity and pressure to obtain stability in the presence of small cut elements. We demonstrate for the first time the applicability of the Nitsche fictitious domain method to three-dimensional Stokes problems. We further discuss a general, flexible and freely available implementation of the method and present numerical examples supporting the theoretical results.

Keywords

Fictitious domain Stokes problem Stabilized finite element methods Nitsche’s method 

Mathematics Subject Classification

65N12 65N30 76D07 

Notes

Acknowledgments

The authors wish to thank Sebastian Warmbrunn for providing the surface geometry used in Sect. 8.4 and Kent-Andre Mardal for insightful discussion on preconditioning. This work is supported by an Outstanding Young Investigator grant from the Research Council of Norway, NFR 180450. This work is also supported by a Center of Excellence grant from the Research Council of Norway to the Center for Biomedical Computing at Simula Research Laboratory.

References

  1. 1.
    Alnæs, M.S., Logg, A., Mardal, K.-A.: UFC: A Finite Element Code Generation Interface, Volume 84 of Lecture Notes in Computational Science and Engineering, chapter 16. Springer, Berlin (2012)Google Scholar
  2. 2.
    Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. (2013). http://arxiv.org/abs/1211.4047. To appear
  3. 3.
    Barth, T., Bochev, P., Gunzburger, M., Shadid, J.: A taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM J. Numer. Anal. 25(5), 1585 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Becker, R., Burman, E., Hansbo, P.: A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198(41–44), 3352–3360 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, Berlin (2008)Google Scholar
  7. 7.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Volume 15 of Springer Series in Computational Mathematics. Springer, New York (1991)Google Scholar
  8. 8.
    Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348(21–22), 1217–1220 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 1–350 (2012)Google Scholar
  10. 10.
    Burman, E., Hansbo, P.: Fictitious domain methods using cut elements: III. A stabilized nitsche method for stokes problem. ESAIM, Math. Model. Numer. Anal. 348(21–22), 19 (2013)Google Scholar
  11. 11.
    Cgal, Computational Geometry Algorithms Library, software package. http://www.cgal.org
  12. 12.
    Ern, A., Guermond, J.L.: Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM Math. Model. Num. Anal 40(1), 29–48 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods for the Stokes problem. In: Gunzburger, M.D., Nicolaides, R.A. (eds.) Incompressible Computational Fluid Dynamics. Cambridge University Press, Cambridge, MA (1993)Google Scholar
  14. 14.
    Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Glowinski, R., Kuznetsov, Y.: Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196(8), 1498–1506 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    gts, GNU Triangulated Surface Library, software package. http://gts.sourceforge.net/
  18. 18.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Isaksen, J.G., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J.H., Waterloo, K., Romner, B., Ingebrigtsen, T.: Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39(12), 3172 (2008)CrossRefGoogle Scholar
  22. 22.
    Johansson, A. and Larson, M. G.: A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123(4), 607–628 (2013)Google Scholar
  23. 23.
    Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58(197), 1 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3), 417–444 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Logg, A.: Automating the finite element method. Arch. Comput. Methods Eng. 14(2), 93–138 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 1–750 (2010)Google Scholar
  28. 28.
    Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: FFC: The FEniCS Form Compiler, chapter 11. Springer, Berlin (2012)Google Scholar
  29. 29.
    Massing, A., Larson, M.G., Logg, A.: Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D. SIAM J. Sci. Comput. 35(1), C23–C47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Massing, A., Larson, M. G., Logg, A., Rognes, M. E.: A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer Math. (2014). doi: 10.1007/s00211-013-0603-z
  31. 31.
    Quarteroni, A.: Numerical Models for Differential Problems. Modeling, Simulation and Applications. Springer, Berlin (2009)CrossRefGoogle Scholar
  32. 32.
    Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)zbMATHGoogle Scholar
  34. 34.
    Steinman, D.A., Milner, J.S., Norley, C.J., Lownie, S.P., Holdsworth, D.W.: Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR. Am. J. Neuroradiol. 24(4), 559–66 (2003). http://www.ncbi.nlm.nih.gov/pubmed/12695182
  35. 35.
    Valen-Sendstad, K., Mardal, K.-A., Mortensen, M., Reif, B.A.P., Langtangen, H.P.: Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44(16), 2826–2832, (2011). doi: 10.1016/j.jbiomech.2011.08.015. http://www.ncbi.nlm.nih.gov/pubmed/21924724
  36. 36.
    Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50(1), 67–83 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yu, Z.: A DLM/FD method for fluid/flexible-body interactions. J. Comput. Phys. 207(1), 1–27 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • André Massing
    • 1
  • Mats G. Larson
    • 2
  • Anders Logg
    • 3
  • Marie E. Rognes
    • 1
  1. 1.Simula Research LaboratoryOsloNorway
  2. 2.Department of MathematicsUmeå UniversityUmeåSweden
  3. 3.Mathematical SciencesChalmers University of TechnologyGothenburgSweden

Personalised recommendations