Journal of Scientific Computing

, Volume 61, Issue 1, pp 61–89

Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows



A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed in the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows.


Direct numerical simulation Compressible flows Compact schemes  High resolution schemes Compact schemes  CRWENO schemes 


  1. 1.
    Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Wilson, R.V., Demuren, A.Q., Carpenter, M.H.: High-order compact schemes for numerical simulation of incompressible flows. ICASE Report 98-13 (1998)Google Scholar
  8. 8.
    Lerat, A., Corre, C.: A residual-based compact scheme for the compressible Navier–Stokes equations. J. Comput. Phys. 170, 642–657 (2001)Google Scholar
  9. 9.
    Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272–299 (1999)Google Scholar
  10. 10.
    Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438–469 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Nagarajan, S., Lele, S.K., Ferziger, J.H.: A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191, 392–419 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Cockburn, B., Shu, C.-W.: Nonlinearly stable compact schemes for shock calculation. SIAM J. Numer. Anal. 31, 607–627 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Yee, H.C.: Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. J. Comput. Phys. 131, 216–232 (1997)CrossRefMATHGoogle Scholar
  14. 14.
    Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Deng, X., Zhang, H.: Developing high order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Zhang, S., Jiang, S., Shu, C.-W.: Development of nonlinear weighted compact schemes with increasingly higher order accuracy. J. Comput. Phys. 227, 7294–7321 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Wang, Z., Huang, G.P.: An essentially nonoscillatory high order Padé-type (ENO-Padé) scheme. J. Comput. Phys. 177, 37–58 (2002)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ghosh, D., Baeder, J.D.: Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(3), A1678–A1706 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Ghosh, D.: Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. Ph.D. thesis, University of Maryland, College Park, (2013)Google Scholar
  22. 22.
    Ghosh, D., Medida, S., Baeder, J.D.: Compact-reconstruction weighted essentially non-oscillatory schemes for unsteady Euler/Navier-Stokes equations. In: AIAA Paper 2012-2832, 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA 25–28 June, 2012Google Scholar
  23. 23.
    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)CrossRefMATHGoogle Scholar
  24. 24.
    Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Fauconnier, D., Dick, E.: On the spectral and conservation properties of nonlinear discretization operators. J. Comput. Phys. 230, 4488–4518 (2011)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO Scheme for the direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Taylor, E.M., Martín, M.P.: Stencil adaptation properties of a WENO scheme in direct numerical simulations of compressible turbulence. J. Sci. Comput. 30(3), 533–554 (2007)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Rogallo, R.S.: Numerical experiments in homogenous turbulence. NASA Technical Memorandum 81315 (1981)Google Scholar
  34. 34.
    Mansour, N.N., Wray, A.A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6(2), 808–814 (1994)CrossRefMATHGoogle Scholar
  35. 35.
    Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)CrossRefGoogle Scholar
  36. 36.
    Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21(12), (2009) paper 126101Google Scholar
  39. 39.
    Colonius, T., Lele, S.K., Moin, P.: Boundary conditions for direct computation of aerodynamic sound. AIAA J. 31, 1574–1582 (1993)CrossRefMATHGoogle Scholar
  40. 40.
    Freund, J.B.: Proposed inflow/outflowboundary condition for direct computation of aerodynamic sound. AIAA J. 35, 740–742 (1997)CrossRefMATHGoogle Scholar
  41. 41.
    Lee, S., Moin, P., Lele, S.K.: Interaction of isotropic turbulence with a shock wave. Report TF-52, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1992)Google Scholar
  42. 42.
    Mahesh, K., Moin, P., Lele, S.K.: The interaction of a shock wave with a turbulent shear flow. Report TF-69, Thermosciences Division, Department of Mechanical Engineering, Stanford University (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Applied Mathematics and Statistics, and Scientific ComputationUniversity of MarylandCollege ParkUSA
  2. 2.Mathematics and Computer Science DivisionArgonne National LaboratoryLemontUSA
  3. 3.Department of Aerospace EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations