Journal of Scientific Computing

, Volume 59, Issue 3, pp 775–794 | Cite as

Approximation of the Stokes–Darcy System by Optimization

Article

Abstract

A solution algorithm for the linear/nonlinear Stokes–Darcy coupled problem is proposed and investigated. The coupled system is formulated as a constrained optimal control problem, where a flow balance is forced across the interface, inflow, and outflow boundaries by minimizing a suitably defined functional. Optimization is achieved by exploiting a Neumann type boundary condition imposed on each subproblem as a control. A numerical algorithm is presented for a least squares functional whose solution yields a minimizer of the constrained optimization problem. Numerical experiments are provided to validate accuracy and efficiency of the algorithm.

Keywords

Stokes–Darcy Least squares Finite element method 

Mathematics Subject Classification

65N55 65N30 76D07 76M10 

References

  1. 1.
    Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arbogast, T., Gomez, M.: A discretization and multigrid solver for a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 13(3), 331–348 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bernardi, C., Rebollo, T.C., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42(3), 375–410 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cesmelioglu, A., Riviére, B.: Primal discontinuous Galerkin methods for time dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chow, S.-S., Carey, G.F.: Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates. Int. J. Numer. Methods Fluids 41, 1085–1118 (2003)Google Scholar
  8. 8.
    Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Discacciati, M., Quarteroni, A., Vali, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ervin, V.J., Jenkins, E.W., Sun, S.: Coupling non-linear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)MATHMathSciNetGoogle Scholar
  13. 13.
    Galvis, J., Sarkis, M.: FETI and BDD preconditioners for Stokes–Mortar–Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Golub, G., van Loan, C.: Matrix Computations. Johns Hopkins University, Baltimore (1989)Google Scholar
  15. 15.
    Groetsch, C.W.: Generalized Inverses of Linear Operators. Marcel Dekker, New York (1977)Google Scholar
  16. 16.
    Gunzburger, M.D., Peterson, J.S., Kwon, H.: An optimization based domain decomposition method for partial differential equations. Comput. Math. Appl. 37, 77–93 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gunzburger, M.D., Lee, H.: An optimization-based domain decomposition method for the Navier–Stokes equations. SIAM J. Numer. Anal. 37, 1455–1480 (2000)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hanspal, N.S., Waghode, A.N., Nassehi, V., Wakeman, R.J.: Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media 64, 1573–1634 (2006)Google Scholar
  19. 19.
    Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Jager, W., Mikeli\(\acute{c}\), A.: On the interface boundary condition of Beaver, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)Google Scholar
  21. 21.
    Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Lee, H.: An optimization-based domain decomposition method for the Boussinesq equations. Numer. Methods Partial Differ. Equ. 18, 1–25 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Lee, H.: Optimal control for quasi-Newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200, 2498–2506 (2011)CrossRefMATHGoogle Scholar
  24. 24.
    Riviére, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Riviére, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesClemson UniversityClemsonUSA

Personalised recommendations