Journal of Scientific Computing

, Volume 59, Issue 1, pp 53–79

Constraint-Free Adaptive FEMs on Quadrilateral Nonconforming Meshes

Article
  • 239 Downloads

Abstract

Finite element methods (FEMs) on nonconforming meshes have been much studied in the literature. In all earlier works on such methods , some constraints must be imposed on the degrees of freedom on the edge/face with hanging nodes in order to maintain continuity, which make the numerical implementation more complicated. In this paper, we present two FEMs on quadrilateral nonconforming meshes which are constraint-free. Furthermore, we establish the corresponding residual-based a posteriori error reliability and efficiency estimation for general quadrilateral meshes. We also present extensive numerical testing results to systematically compare the performance among three adaptive quadrilateral FEMs: the constraint-free adaptive \(\mathbb Q _1\) FEM on quadrilateral nonconforming meshes with hanging nodes developed herein, the adaptive \(\mathbb Q _1\) FEM based on quadrilateral red-green refinement without any hanging node recently proposed in Zhao et al. (SIAM J Sci Comput 3(4):2099–2120, 2010), and the classical adaptive \(\mathbb Q _1\) FEM on quadrilateral nonconforming meshes with constraints on hanging nodes. Some extensions are also included in this paper.

Keywords

Adaptive finite element A posteriori error estimate  Quadrilateral Nonconforming Hanging node Constraint-free 

Mathematics Subject Classification

65N12 65N15 65N30 65N50 35J25 

References

  1. 1.
    Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Ainsworth, M., Demkowicz, L., Kim, C.W.: Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes. Comput. Methods Appl. Mech. Eng. 196, 3493–3507 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics. Wiley-Interscience, Wiley, New York (2000)Google Scholar
  4. 4.
    Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Arnold, D.N., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Babuska, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement, scientific computing. In: Stepleman, R.S. (ed.) Applications of Mathematics and Computing to the Physical Sciences, pp. 3–17. North-Holland, Amsterdam (1993)Google Scholar
  8. 8.
    Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3, 181–191 (1991)CrossRefMATHGoogle Scholar
  9. 9.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comp. 66(218), 465–476 (1997)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Carstensen, C., Bartels, S., Jansche, S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Carstensen, C., Hu, Jun: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24, 443–462 (2002)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Choi, C.K., Park, Y.M.: Nonconforming transition plate bending elements with variable mid-side nodes. Comput. Struct. 32, 295–304 (1989)CrossRefMATHGoogle Scholar
  15. 15.
    Dari, E., Duran, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64(211), 1017–1033 (1995)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30, 385–400 (1996)MATHMathSciNetGoogle Scholar
  17. 17.
    Heuveline, V., Schieweck, F.: \(H^1\) -interpolation on quadrilateral and hexahedral meshes with hanging nodes. Computing 80, 203–220 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Huang, F., Xie, X.: A modified nonconforming 5-node quadrilateral transition finite element. Adv. Appl. Math. Mech. 2(6), 784–797 (2010)MATHMathSciNetGoogle Scholar
  19. 19.
    Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4, 101–129 (1975)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Leitner, E., Selberherr, S.: Three-dimensional grid adaptation using a mixed-element decomposition method. In: Ryssel, H., Pichler, P. (eds.) Simulation of Semiconductor Devices and Processes, vol. 6, pp. 464–467. Springer, Berlin (1995)Google Scholar
  22. 22.
    Maubach, J.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210–227 (1995)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Mitchell, W.F.: Adaptive refinement for arbitrary finite element spaces with hierarchical basis. J. Comput. Appl. Math. 36, 65–78 (1991)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with tetrahedra. In: 12th international meshing roundtable. Sandia National Laboratories pp 103–114 (2003)Google Scholar
  25. 25.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Plaza, A., Carey, G.F.: Local refinement of simplicial grids based on the skeleton. Appl. Numer. Math. 32(2), 195–218 (2000)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21, 604–613 (1984)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Rivara, M.C., Iribarren, G.: The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math. Comput. 65(216), 1485–1501 (1996)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Rosenberg, I.G., Stenger, F.: A lower bound on the angles of triangles constructed by biseciting the longest side. Math. Comp. 29, 390–395 (1975)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Zhao, X.Y., Mao, S.P., Shi, Z.C.: Adaptive quadrilateral and hexahedral finite element methods with hanging nodes and convergence analysis. J. Comput. Math. 28(5), 621–644 (2010)MATHMathSciNetGoogle Scholar
  31. 31.
    Zhao, X.Y., Mao, S.P., Shi, Z.C.: Adaptive finite element methods on quadrilateral meshes without hanging nodes. SIAM J. Sci. Comput. 32(4), 2099–2120 (2010)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Zhao, X.Y.: Red-green-type refinements, nonconforming elements, quadrilateral hanging-node-free and constraint-free adaptive methods (in Chinese). PhD dissertation, Library of Academy of mathematics and systems science, Chinese Academy of Sciences, May (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, NCMIS, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  3. 3.Beijing Computational Science Research CenterBeijingPeople’s Republic of China

Personalised recommendations