Journal of Scientific Computing

, Volume 58, Issue 3, pp 672–689 | Cite as

Numerical Simulation of Cylindrical Solitary Waves in Periodic Media

  • Manuel Quezada de LunaEmail author
  • David I. Ketcheson


We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.


Stegotons Solitary waves Periodic media Effective dispersion  Hyperbolic PDEs Riemann solvers 



The authors thank Randall LeVeque and an anonymous referee for comments that improved the original manuscript.


  1. 1.
    Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Barry, S.F., Zhang, H.: PETSc Web Page, 2012.
  2. 2.
    Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24(3), 955–978 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Berezovski, A., Berezovski, M., Engelbrecht, J.: Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mater. Sci. Eng.A 418(1–2), 364–369 (2006)CrossRefGoogle Scholar
  4. 4.
    Fouque, J.P., Garnier, J., Nachbin, A.: Shock structure due to stochastic forcing and the time reversal of nonlinear waves. Phys. D: Nonlinear Phenom. 195(3–4), 324–346 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ketcheson, D.I., Parsani, M., LeVeque, R.J.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. In pressGoogle Scholar
  6. 6.
    Ketcheson, D.I.: High order strong stability preserving time integrators and numerical wave propagation methods for hyperbolic PDEs. PhD thesis, Citeseer, 2009Google Scholar
  7. 7.
    Ketcheson, D.I., LeVeque, R.J.: Shock dynamics in layered periodic media. Commun. Math. Sci. 10(3), 859–874 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ketcheson, D.I., Mandli, K.T., Ahmadia, A., Alghamdi, A., Quezada de Luna, M., Parsani, M., Knepley, M.G., Emmett, M.: PyClaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34(4), C210–C231 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    LeVeque, R.J., Berger, M.J.: Clawpack Software Version 4.5. 2011.
  10. 10.
    LeVeque, R.J.: Finite-volume methods for non-linear elasticity in heterogeneous media. Int. J. Numer. Methods Fluids 40(1–2), 93–104 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Univ Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Leveque, R.J., Yong, D.H.: Solitary waves in layered nonlinear media. SIAM J. Appl.Math. 63(5), 1539–1560 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Quezada de Luna, M.: Nonlinear wave propagation and solitary wave formation in two-dimensional heterogeneous media. Master’s thesis, King Abdullah University of Science and Technology (KAUST), (2011)Google Scholar
  14. 14.
    Santosa, F., Symes, W.W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51(4), 984–1005 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Simpson, G., Weinstein, M.I.: Coherent structures and carrier shocks in the nonlinear periodic maxwell equations. Multiscale Model. Simul. 9, 955 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Xu, Z., Zhang, P., Liu, R.: Delta-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media. Appl. Numer. Math. 57, 103–116 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations