Journal of Scientific Computing

, Volume 58, Issue 3, pp 574–591

The Lower/Upper Bound Property of Approximate Eigenvalues by Nonconforming Finite Element Methods for Elliptic Operators

Article

Abstract

This paper is a complement of the work (Hu et al. in arXiv:1112.1145v1[math.NA], 2011), where a general theory is proposed to analyze the lower bound property of discrete eigenvalues of elliptic operators by nonconforming finite element methods. One main purpose of this paper is to propose a novel approach to analyze the lower bound property of discrete eigenvalues produced by the Crouzeix–Raviart element when exact eigenfunctions are smooth. In particular, under some conditions on the triangular mesh, it is proved that the Crouzeix–Raviart element method of the Laplace operator yields eigenvalues below exact ones. Such a theoretical result explains most of numerical results in the literature and also partially answers the problem of Boffi (Acta Numerica 1–120, 2010). This approach can be applied to the Crouzeix–Raviart element of the Stokes eigenvalue problem and the Morley element of the buckling eigenvalue problem of a plate. As a second main purpose, a new identity of the error of eigenvalues is introduced to study the upper bound property of eigenvalues by nonconforming finite element methods, which is successfully used to explain why eigenvalues produced by the rotated $$Q_1$$ element of second order elliptic operators (when eigenfunctions are smooth), the Adini element (when eigenfunctions are singular) and the new Zienkiewicz-type element of fourth order elliptic operators, are above exact ones.

Keywords

Lower bound Upper bound Eigenvalue Nonconforming finite element

References

1. 1.
Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)
2. 2.
Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)Google Scholar
3. 3.
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19, 1–120 (2010)Google Scholar
4. 4.
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM Classics in Applied Mathematics, Philadelphia (2002)
5. 5.
Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)
6. 6.
Hu, J., Huang, Y.Q., Lin, Q.: The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods. arXiv:1112.1145v1[math.NA] (2011)Google Scholar
7. 7.
Hu, J., Huang, Y.Q., Shen, Q.: A high accuracy post-processing algorithm for the eigenvalues of elliptic operators. J. Sci. Comput. 52, 426–445 (2012)
8. 8.
Hu, J., Huang, Y.Q., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of the elliptic operators by the nonconforming element (under review)Google Scholar
9. 9.
Kikuchi, F., Liu, X.: Estimation of interpolation error constants for the $$P_0$$ and $$P_1$$ triangular finite elements. Comput. Methods Appl. Mech. Eng. 196, 3750–3758 (2007)
10. 10.
Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30, 195–200 (2008)
11. 11.
Lin, Q., Xie, H.H., Luo, F.S., Li, Y., Yang, Y.D.: Stokes eigenvalue approximations from below wirh nonconforming mixed finite element methods. Math. Pract. Theory 40, 157–168 (2010)
12. 12.
Lin, Q., Xie, H.H., Xu, J.C.: Lower Bounds of the Discretization for Piecewise Polynomials. arXiv:1106.4395v1 [Math.NA] (22 Jun 2011)Google Scholar
13. 13.
Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chin. J. Numer. Meth. Comput. Appl. 2, 81–91 (2005)
14. 14.
Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)Google Scholar
15. 15.
Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)
16. 16.
Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDEs 8, 97–111 (1992)
17. 17.
Shen, Q.: High-Accuracy Algorithms for the Eigenvalue Problems of the Elliptic Operators and the Vibration Frequencies of the Cavity Flow (In Chinese). PhD. Dissertation in School of Mathematical Science, Peking University (June 2012)Google Scholar
18. 18.
Shi, Z.C., Wang, M.: The Finite Element Method (In Chinese). Science Press, Beijing (2010)Google Scholar
19. 19.
Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
20. 20.
Wang, M., Shi, Z.C., Xu, J.C.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106, 335–347 (2007)
21. 21.
Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comp. Math. 18, 413–418 (2000)
22. 22.
Yang, Y.D., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)
23. 23.
Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Sci. China: Math. 53, 137–150 (2010)
24. 24.
Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s elements. Chin. J. Numer. Math. Appl. 29, 81–84 (2007)Google Scholar
25. 25.
Zienkiewicz, O.C., Cheung, Y.K.: The Finite Element Method in Structrural and Continuum Mechanics. McGraw-Hill, New York (1967)Google Scholar 