Journal of Scientific Computing

, Volume 58, Issue 3, pp 548–573 | Cite as

A New Poisson Noise Filter Based on Weights Optimization

  • Qiyu Jin
  • Ion Grama
  • Quansheng LiuEmail author


We propose a new image denoising algorithm when the data is contaminated by a Poisson noise. As in the Non-Local Means filter, the proposed algorithm is based on a weighted linear combination of the observed image. But in contrast to the latter where the weights are defined by a Gaussian kernel, we propose to choose them in an optimal way. First some “oracle” weights are defined by minimizing a very tight upper bound of the Mean Square Error. For a practical application the weights are estimated from the observed image. We prove that the proposed filter converges at the usual optimal rate to the true image. Simulation results are presented to compare the performance of the presented filter with conventional filtering methods.


Poisson noise Mean Square Error Oracle estimate  Optimal Weights Filter  



We would like to thank the reviewers for their helpful comments and remarks. The work has been partially supported by the National Natural Science Foundation of China (Grant Nos. 11101039 and 11171044), Jiangsu Engineering Center of Network Monitoring of Nanjing University of Information Science & Technology (Grant KJR1109), and Hunan Provincial Natural Science Foundation of China (Grant No. 11JJ2001).


  1. 1.
    Abraham, I., Abraham, R., Desolneux, A., Li-Thiao-Te, S.: Significant edges in the case of non-stationary gaussian noise. Pattern Recognit. 40(11), 3277–3291 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aharon, M., Elad, M., Bruckstein, A.: \(rmk\)-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  3. 3.
    Anscombe, F.J.: The transformation of poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bardsley, J.M., Luttman, A.: Total variation-penalized poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31(1), 35–59 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41(5), 811–848 (2000)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Buades, T., Lou, Y., Morel, J.M., Tang, Z.: A note on multi-image denoising. In: International Workshop on Local and Non-Local Approximation in Image Processing, pp. 1–15 (2009)Google Scholar
  9. 9.
    Deledalle, C.-A., Tupin, F., Denis, L.: Poisson nl means: Unsupervised non local means for poisson noise. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 801–804. IEEE (2010)Google Scholar
  10. 10.
    Fan, J.: Local linear regression smoothers and their minimax efficiencies. Ann. Stat. 21(1), 196–216 (1993)Google Scholar
  11. 11.
    Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Monographs on Statistics and Applied Probability, vol. 66. Chapman and Hall (1996)Google Scholar
  12. 12.
    Fryzlewicz, P., Delouille, V., Nason, G.P.: Goes-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform. J. R. Stat. Soc. Ser. C 56(1), 99–116 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fryzlewicz, P., Nason, G.P.: A Haar-Fisz algorithm for poisson intensity estimation. J. Comput. Graph. Stat. 13(3), 621–638 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hammond, D.K., Simoncelli, E.P.: Image modeling and denoising with orientation-adapted gaussian scale mixtures. IEEE Trans. Image Process. 17(11), 2089–2101 (2008)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hirakawa, K., Parks, T.W.: Image denoising using total least squares. IEEE Trans. Image Process. 15(9), 2730–2742 (2006)CrossRefGoogle Scholar
  16. 16.
    Jansen, M.: Multiscale poisson data smoothing. J. R. Stat. Soc. B 68(1), 27–48 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jin, Q., Grama, I., Liu, Q.: Removing gaussian noise by optimization of weights in non-local means. arXiv, preprint arXiv:1109.5640 (2011)Google Scholar
  18. 18.
    Jin, Q., Grama, I., Liu, Q.: A non-local means filter for removing the poisson noise. Preprint (2012)Google Scholar
  19. 19.
    Jin, Q., Grama, I., Liu, Q.: Removing poisson noise by optimization of weights in non-local means. In: Photonics and Optoelectronics (SOPO), 2012 Symposium on, pp. 1–4. IEEE (2012)Google Scholar
  20. 20.
    Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006)CrossRefGoogle Scholar
  22. 22.
    Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of poisson-corrupted images. Signal Process. 90(2), 415–427 (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Makitalo, M., Foi, A.: On the inversion of the anscombe transformation in low-count poisson image denoising. In: Proceedings International Workshop on Local and Non-Local Approx. in Image Process., LNLA 2009, Tuusula, Finland, pp. 26–32. IEEE (2009)Google Scholar
  27. 27.
    Makitalo, M., Foi, A.: Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2011)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Mandel, J.: Use of the singular value decomposition in regression analysis. Am. Stat. 36(1), 15–24 (1982)Google Scholar
  29. 29.
    Merlevède, F., Peligrad, M., Rio, E.: A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151(3–4), 435–474 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Nowak, R., Kolaczyk, E.D.: A multiscale map estimation method for poisson inverse problems. In: 32nd Asilomar Conference Signals, Systems, and Computers, vol. 2, pp. 1682–1686. IEEE (1998)Google Scholar
  31. 31.
    Nowak, R.D., Kolaczyk, E.D.: A statistical multiscale framework for poisson inverse problems. IEEE Trans. Inf. Theory 46(5), 1811–1825 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Polzehl, J., Spokoiny, V.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. 135(3), 335–362 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)Google Scholar
  35. 35.
    Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Sacks, J., Ylvisaker, D.: Linear estimation for approximately linear models. Ann. Stat. 6(5), 1122–1137 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Represent. 21(3), 193–199 (2010)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Terrell, G.R., Scott, D. W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)Google Scholar
  39. 39.
    Whittle, P.: Optimization Under Constraints: Theory and Applications of Nonlinear Programming. Wiley, New York (1971)zbMATHGoogle Scholar
  40. 40.
    Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process. 17(7), 1093–1108 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.UMR 6205, Laboratoire de Mathmatiques de Bretagne AtlantiqueUniversité de Bretagne-SudVannesFrance
  3. 3.Jiangsu Engineering Center of Network Monitoring Nanjing University of Information Science and Technology NanjingChina
  4. 4.School of Mathematics and Computing Sciences Changsha University of Science and TechnologyChangshaChina

Personalised recommendations