Journal of Scientific Computing

, Volume 58, Issue 2, pp 409–430 | Cite as

A Comparison of Iterated Optimal Stopping and Local Policy Iteration for American Options Under Regime Switching

  • J. Babbin
  • P. A. Forsyth
  • G. Labahn


A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical algorithm for American options under regime switching (Le and Wang in SIAM J Control Optim 48(8):5193–5213, 2010). Similar methods have also been proposed for American options under jump diffusion (Bayraktar and Xing in Math Methods Oper Res 70:505–525, 2009) and Asian options under jump diffusion (Bayraktar and Xing in Math Fin 21(1):117–143, 2011). An alternative method, local policy iteration, has been suggested in Huang et al. (SIAM J Sci Comput 33(5):2144–2168, 2011), and Salmi and Toivanen (Appl Numer Math 61:821–831, 2011). Worst case upper bounds on the convergence rates of these two methods suggest that local policy iteration should be preferred over iterated optimal stopping (Huang et al. in SIAM J Sci Comput 33(5):2144–2168, 2011). In this article, numerical tests are presented which indicate that the observed performance of these two methods is consistent with the worst case upper bounds. In addition, while these two methods seem quite different, we show that either one can be converted into the other by a simple rearrangement of two loops.


Iterated optimal stopping Local policy iteration Regime switching 

Mathematics Subject Classification

60G40 65N06 65K15 


  1. 1.
    Almendral, A., Oosterlee, C.W.: Accurate evaluation of European and American options under the CGMY process. SIAM J. Sci. Comput. 29, 93–117 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 1–21. Cambridge University Press, Cambridge (1997)Google Scholar
  3. 3.
    Barles, G., Daher, C.H., Romano, M.: Convergence of numerical shemes for parabolic eqations arising in finance theory. Math. Mod. Methods Appl. Sci. 5, 125–143 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bayraktar, E., Xing, H.: Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions. Math. Methods Oper. Res. 70, 505–525 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bayraktar, E., Xing, H.: Pricing Asian options for jump diffusions. Math. Fin. 21(1), 117–143 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bierbrauer, M., Truck, S., Weron, R.: Modeling electricity prices with regime switching models. In: Computational Science—ICCS 2004, vol. 3039 of Lecture Notes in Computer Science, pp. 859–867. Springer Berlin/Heidelberg (2004)Google Scholar
  7. 7.
    Bokanowski, O., Maroso, S., Zidani, H.: Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47, 3001–3026 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Brennan, J., Schwartz, E.S.: The valuation of American put options. J. Fin. 32, 449–462 (1977)CrossRefGoogle Scholar
  9. 9.
    Briani, A., Camilli, F., Zidani, H.: Approximation schemes for monotone systems of nonlinear second order differential equations: convergence result and error estimate. Diff. Equ. Appl. 4, 297–317 (2012)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Chancelier, J., Øksendal, B., Sulem, A.: Combined stochastic control and optimal stopping, and application to numerical approximation of combined stochastic and impulse control. Proc. Steklov Inst. Math. 237, 140–163 (2002)Google Scholar
  11. 11.
    Chancelier, J., Øksendal, B., Sulem, A.: Combined stochastic control and optimal stopping, and application to numerical approximation of combined stochastic and impulse control. Tr. Mat. Inst. Steklova 237, 149–172 (2002)Google Scholar
  12. 12.
    Chancelier, J.P., Messaoud, M., Sulem, A.: A policy iteration algorithm for fixed point problems with nonexpansive operators. Math. Methods Oper. Res. 65, 239–259 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chen, S., Insley, M.: Regime switching in stochastic models of commodity prices: an application to an optimal tree harvesting problem. J. Econ. Dyn. Control 36, 201–219 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chen, Z., Forsyth, P.A.: Implications of a regime switching model on natural gas storage valuation and optimal operation. Quan. Fin. 10, 159–176 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential levy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Crepey, S.: About pricing equations in finance. In: Carmona, A.R. (ed.) Paris-Princeton Lectures on Mathematical Finance, pp. 63–203. Springer, Berlin, 2010. Lecture Notes in Mathematics (2003)Google Scholar
  17. 17.
    Cryer, C.W.: The efficient solution of linear complemetarity problems for tridiagonal Minkowski matrices. ACM Trans. Math. Softw. 9, 199–214 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Forsyth, P.A., Labahn, G.: Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance. J. Comput. Fin. 11(Winter), 1–44 (2008)Google Scholar
  19. 19.
    Hardy, M.: A regime switching model of long term stock returns. North Am. Actuar. J. 5, 41–53 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Howison, S., Reisinger, C., Witte, J.H.: The effect of non-smooth payoffs on the penalty approximation for American options. SIAM J. Financ. Math. (to appear)Google Scholar
  21. 21.
    Huang, Y., Forsyth, P.A., Labahn, G.: Methods for pricing American options under regime switching. SIAM J. Sci. Comput. 33(5), 2144–2168 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance. SIAM J. Numer. Anal. 50, 1849–1860 (2012)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Ishii, H., Koike, S.: Viscosity solutions for monotone systems of second order elliptic PDEs. Commun. Part. Diff. Equ. 16, 1095–1128 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ishii, H., Koike, S.: Viscosity solutions of a system of nonlinear elliptic PDEs arising in switching games. Funkcialaj Ekvacioj 34, 143–155 (1991)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Jakobsen, E.: Monotone schemes. In: Cont, R. (ed.) Encycl. Quan. Fin., pp. 1253–1263. Wiley, New York (2010)Google Scholar
  26. 26.
    Kennedy, J.S.: Hedging contingent claims in markets with jumps. PhD thesis, School of Computer Science, University of Waterloo (2007)Google Scholar
  27. 27.
    Le, H., Wang, C.: A finite horizon optimal stopping problem with regime switching. SIAM J. Control Optim. 48(8), 5193–5213 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Nochetto, R.H., van Petersdorff, T., Zhang, C.S.: A posteriori error analysis for a class of integral equations with variational inequalities. Numerische Mathematik 116, 519–552 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Salmi, S., Toivanen, J.: An iterative method for pricing American options under jump diffusion models. Appl. Numer.l Math. 61, 821–831 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Wilmott, P.: Paul Wilmott on Quantitative Finance. Wiley, West Sussex (2000)Google Scholar
  31. 31.
    Yang, H.: A numerical analysis of American options with regime switching. J. Sci. Comput. 44(1), 69–91 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Computational MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations