Advertisement

Journal of Scientific Computing

, Volume 54, Issue 1, pp 177–199 | Cite as

Analysis of an Interior Penalty Method for Fourth Order Problems on Polygonal Domains

  • Thirupathi GudiEmail author
  • Hari Shanker Gupta
  • Neela Nataraj
Article

Abstract

Error analysis for a stable C 0 interior penalty method is derived for general fourth order problems on polygonal domains under minimal regularity assumptions on the exact solution. We prove that this method exhibits quasi-optimal order of convergence in the discrete H 2, H 1 and L 2 norms. L norm error estimates are also discussed. Theoretical results are demonstrated by numerical experiments.

Keywords

Finite element C0 interior penalty Discontinuous Galerkin Error estimate Fourth order 

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000) zbMATHCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balasundaram, S., Bhattacharyya, P.K.: On existence of solution of the Dirichlet problem of fourth order partial differential equations with variable coefficients. Q. Appl. Math. 39, 311–317 (1983) MathSciNetGoogle Scholar
  4. 4.
    Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A higher order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen (1997) Google Scholar
  5. 5.
    Bhattacharyya, P.K., Nataraj, N.: Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients. Modél. Math. Anal. Numér. 36, 1–32 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008) zbMATHCrossRefGoogle Scholar
  7. 7.
    Brenner, S.C., Sung, L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brenner, S.C., Sung, L.-Y.: Multigrid algorithms for C 0 interior penalty methods. SIAM J. Numer. Anal. 44, 199–223 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math. 102, 231–255 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Brenner, S.C., Gudi, T., Sung, L.-Y.: An a posteriori error estimator for a quadratic C 0 interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brenner, S.C., Neilan, M.: A C 0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2010) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) zbMATHCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141–187 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dung, N.T., Wells, G.N.: Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Eng. 197, 2778–2788 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Feng, X., Karakashian, O.A.: Two-level nonoverlapping additive Schwarz methods for a discontinuous Galerkin approximation of the biharmonic problem. J. Comput. Sci. 22, 299–324 (2005) MathSciNetGoogle Scholar
  18. 18.
    Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, 573–594 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985) zbMATHGoogle Scholar
  20. 20.
    Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992) zbMATHGoogle Scholar
  21. 21.
    Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin methods for the biharmonic equation. J. Sci. Comput. 37, 103–232 (2008) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gudi, T.: A New error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010), available online MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hansbo, P., Larson, M.G.: A discontinuous Galerkin method for the plate equation. Calcolo 39, 41–59 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Huang, J., Huang, X., Han, W.: A new C 0 discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 199, 1446–1454 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kesavan, S.: Topics in Functional Analysis and Applications. New Age International(P). Limited, New Delhi (1989) zbMATHGoogle Scholar
  26. 26.
    Kulshreshtha, K., Nataraj, N., Jung, M.: Performance of a parallel mixed finite element implementation for fourth order clamped anisotropic plate bending problems in distributed memory environments. Appl. Math. Comput. 155, 753–777 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mozolevski, I., Süli, E., Bösing, P.R.: hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Nitsche, J.A.: Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 915 (1971) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Reddy, J., Gera, R.: An improved finite-difference analysis of bending of thin rectangular elastic plates. Compos. Struct. 10, 431–438 (1979) zbMATHCrossRefGoogle Scholar
  30. 30.
    Süli, E., Mozolevski, I.: hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, 1851–1863 (2007) zbMATHCrossRefGoogle Scholar
  31. 31.
    Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. In: Proceedings of the Fifth International Congress on Computational and Applied Mathematics, Leuven, 1992, vol. 50, pp. 67–83 (1994) Google Scholar
  32. 32.
    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1995) Google Scholar
  33. 33.
    Wells, G.N., Dung, N.T.: A C 0 discontinuous Galerkin formulation for Kirchoff plates. Comput. Methods Appl. Mech. Eng. 196, 3370–3380 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thirupathi Gudi
    • 1
    Email author
  • Hari Shanker Gupta
    • 1
  • Neela Nataraj
    • 2
  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of MathematicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations