Journal of Scientific Computing

, Volume 54, Issue 2–3, pp 549–576 | Cite as

Bregmanized Domain Decomposition for Image Restoration

  • Andreas Langer
  • Stanley Osher
  • Carola-Bibiane Schönlieb


Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems such as total variation minimization became increasingly important for the solution of these tasks. While being favorable due to the improved enhancement of images compared to smooth imaging approaches, non-smooth minimization problems typically scale badly with the dimension of the data. Hence, for large imaging problems solved by total variation minimization domain decomposition algorithms have been proposed, aiming to split one large problem into N>1 smaller problems which can be solved on parallel CPUs. The N subproblems constitute constrained minimization problems, where the constraint enforces the support of the minimizer to be the respective subdomain.

In this paper we discuss a fast computational algorithm to solve domain decomposition for total variation minimization. In particular, we accelerate the computation of the subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting–Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strategy. The computational performance of this new approach is discussed for its application to image inpainting and image deblurring. It turns out that the proposed new solution technique is up to three times faster than the iterative algorithm currently used in domain decomposition methods for total variation minimization.


Domain decomposition Bregman distance Iterative Bregman algorithms Image restoration Total variation 



Andreas Langer acknowledges the financial support provided by the FWF project Y 432-N15 START-Preis Sparse Approximation and Optimization in High Dimensions and the project WWTF Five senses-Call 2006, Mathematical Methods for Image Analysis and Processing in the Visual Arts. Stanley Osher acknowledges the NSF grants DMS0835863 and DMS0914561, the ONR grant N000140910360, and ARO Muri subs from Rice University and the University of South Carolina. Carola-Bibiane Schönlieb acknowledges the financial support provided by the Cambridge Centre for Analysis (CCA), the DFG Graduiertenkolleg 1023 Identification in Mathematical Models: Synergy of Stochastic and Numerical Methods and the Royal Society International Exchanges Award IE110314. Further, this publication is based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST).


  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000), p. xviii zbMATHGoogle Scholar
  2. 2.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, Berlin (2002) Google Scholar
  3. 3.
    Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. U.S.S.R. Comput. Math. Math. Phys. 7, 200–217 (1967) CrossRefGoogle Scholar
  4. 4.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004) MathSciNetGoogle Scholar
  5. 5.
    Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009) CrossRefGoogle Scholar
  6. 6.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Daubechies, I., Defrise, M., DeMol, C.: An iterative thresholding algorithm for linear inverse problems. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Theor. Imaging 1(1), 29–46 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: IbPRIA 2005. Lecture Notes in Computer Science, vol. 3522, pp. 717–765 (2005) Google Scholar
  12. 12.
    Dobson, D., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Engl, HW., Hanke, M., Neubauer, A.: Regularization of inverse problems. In: Mathematics and Its Applications (Dordrecht), vol. 375. Kluwer Academic Publishers, Dordrecht (1996) Google Scholar
  14. 14.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) zbMATHGoogle Scholar
  15. 15.
    Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23(6), 2505–2526 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and 1-minimization. SIAM J. Numer. Anal. 47(4), 3397–3428 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Frick, K., Scherzer, O.: Regularization of ill-posed linear equations by the non-stationary augmented Lagrangian method. J. Integral Equ. Appl. 22(2), 217–257 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Goldstein, T., Osher, S.: The split Bregman method for 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008) zbMATHCrossRefGoogle Scholar
  22. 22.
    Langer, A.: Convergence analysis of a non-overlapping domain decomposition algorithm for total variation minimization. J. Comput. Appl. Math. (2009, submitted) Google Scholar
  23. 23.
    Langer, A.: Subspace correction and domain decomposition methods for total variation minimization. PhD Thesis, Johannes Kepler University Linz (2011) Google Scholar
  24. 24.
    Loris, I.: On the performance of algorithms for the minimization of 1-penalized functionals. Inverse Probl. 25, 035007 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103, 127–152 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992) zbMATHCrossRefGoogle Scholar
  28. 28.
    Schönlieb, C.-B.: Total variation minimization with an H −1 constraint. In: Singularities in Nonlinear Evolution Phenomena and Applications Proceedings, Scuola Normale Superiore Pisa. CRM Series, vol. 9, pp. 201–232 (2009) Google Scholar
  29. 29.
    Setzer, S.: Split Bregman algorithm, Douglas–Rachford splitting and frame shrinkage. In: Tai, X.-C., et al. (eds.) Proceedings of the Second International Conference on Scale Space Methods and Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision. LNCS, vol. 5567, pp. 464–476. Springer, Berlin (2009) CrossRefGoogle Scholar
  30. 30.
    Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andreas Langer
    • 1
  • Stanley Osher
    • 2
  • Carola-Bibiane Schönlieb
    • 3
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  2. 2.Department of MathematicsUCLALos AngelesUSA
  3. 3.Department of Applied Mathematics and Theoretical Physics (DAMTP)University of CambridgeCambridgeUK

Personalised recommendations