Journal of Scientific Computing

, Volume 53, Issue 3, pp 672–688 | Cite as

Legendre Spectral Collocation Methods for Pantograph Volterra Delay-Integro-Differential Equations

  • Yunxia Wei
  • Yanping Chen


This paper is concerned with the convergence properties of the Legendre spectral collocation methods when used to approximate smooth solutions of Volterra integro-differential equations with proportional (vanishing) delays. We provide a vigorous error analysis for the proposed methods. Furthermore, we prove that both the errors of approximate solutions and the errors of approximate derivatives decay exponentially in L 2-norm and L -norm. Some numerical experiments are given to confirm the theoretical results.


Volterra delay-integro-differential equations Legendre-collocation methods Gauss quadrature formula Convergence analysis 



This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University, Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), National Science Foundation of China (10971074).


  1. 1.
    Ali, I., Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math. 27, 254–265 (2009) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ali, I., Brunner, H., Tang, T.: Spectral methods for pantograph-type differential and integral equations with multiple delays. Front. Math. China 4, 49–61 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Techniques of Scientific Computing. Handbook of Numerical Analysis, vol. 5, pp. 209–486 (1997) Google Scholar
  4. 4.
    Brunner, H.: Iterated collocation methods for Volterra integral equations with delay arguments. Math. Comput. 62, 581–599 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004) zbMATHCrossRefGoogle Scholar
  6. 6.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer, Berlin (2006) zbMATHGoogle Scholar
  7. 7.
    Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Enright, W.H., Hu, M.: Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay. Appl. Numer. Math. 24, 175–190 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gan, S.Q.: Dissipativity of θ-methods for nonlinear Volterra delay-integro-differential equations. J. Comput. Appl. Math. 206, 898–907 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Guo, B.Y., Shen, J.: Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer. Math. 86, 635–654 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Guo, B.Y., Wang, L.L.: Jacobi interpolation approximations and their applications to singular differential equations. Adv. Comput. Math. 14, 227–276 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1989) Google Scholar
  14. 14.
    Ishiwata, E., Muroya, Y.: On collocation methods for delay differential and Volterra integral equations with proportional delay. Front. Math. China 4, 89–111 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Li, Y.K., Kuang, Y.: Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 255, 260–280 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Linz, P., Wang, R.L.C.: Error bounds for the solution of Volterra and delay equations. Appl. Numer. Math. 9, 201–207 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mastroianni, G., Monegato, G.: Nystrom interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations. IMA J. Numer. Anal. 17, 621–642 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Neval, P.: Mean convergence of Lagrange interpolation. III. Trans. Am. Math. Soc. 282, 669–698 (1984) CrossRefGoogle Scholar
  19. 19.
    Qu, C.K., Wong, R.: Szego’s conjecture on Lebesgue constants for Legendre series. Pac. J. Math. 135, 157–188 (1988) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113–1133 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006) zbMATHGoogle Scholar
  22. 22.
    Tang, T., Xu, X., Chen, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, W.S., Li, S.F.: Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations. Front. Math. China 4, 195–216 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wiederholt, L.F.: Stability of multistep methods for delay differential equations. Math. Comput. 30, 283–290 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wu, S.F., Gan, S.Q.: Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Comput. Math. Appl. 55, 2426–2443 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Xu, C.L., Guo, B.Y.: Laguerre pseudospectral method for nonlinear partial differential equations. J. Comput. Math. 20, 413–428 (2002) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhang, C.J., Vandewalle, S.: Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J. Numer. Anal. 24, 193–214 (2004) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, J.J., Xu, Y., Liu, M.Z.: Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system. Appl. Math. Comput. 167, 1062–1079 (2005) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Mathematical SciencesSouth China Normal UniversityGuangzhouChina

Personalised recommendations