Journal of Scientific Computing

, Volume 53, Issue 3, pp 528–551 | Cite as

Stability at Nonconforming Grid Interfaces for a High Order Discretization of the Schrödinger Equation



In this paper we extend the results from our earlier work on stable boundary closures for the Schrödinger equation using the summation-by-parts-simultaneous approximation term (SBP–SAT) method to include stability and accuracy at nonconforming grid interfaces. Stability at the grid interface is shown by the energy method, and the estimates are generalized to multiple dimensions. The accuracy of the grid interface coupling is investigated using normal mode analysis for operators of 2nd and 4th order formal interior accuracy. We show that full accuracy is retained for the 2nd and 4th order operators. The accuracy results are extended to 6th and 8th order operators by numerical simulations, in which case two orders of accuracy is gained with respect to the lower order approximation close to the interface.


Schrödinger equation Finite difference methods Summation-by-parts operator Stability Grid interface 


  1. 1.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Stout, Q., De Zeeuw, D., Gombosi, T., Groth, C., Marshall, H., Powell, K.: Adaptive blocks: A high-performance data structure. In: Proceedings of the 1997 ACM/IEEE SC97 Conference (1997) Google Scholar
  3. 3.
    Rantakokko, J., Thuné, M.: Parallel structured adaptive mesh refinement. In: Troubec, R. et al. (eds.) Parallel Computing. Springer, London, pp. 147–173 (2009) CrossRefGoogle Scholar
  4. 4.
    Ferm, L., Lötstedt, P.: Accurate and stable grid interfaces for finite volume methods. Appl. Numer. Math. 49, 207–224 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Choi, D.-I., Brown, J.D., Imbibira, B., Centrella, J., MacNiece, P.: Interface conditions for wave propagations through mesh refinement boundaries. J. Comput. Phys. 193, 398–425 (2004) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kosloff, D., Kosloff, R.: A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983) MATHCrossRefGoogle Scholar
  7. 7.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236 (1994) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32(4), 2298–2320 (2010) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 621–645 (1999) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nordström, J., Gong, J., van der Weide, E., Svärd, M.: A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228, 9020–9035 (2009) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Reula, O.: Numerical treatment of interfaces in quantum dynamics (2011). arXiv:1103.5448v1 [quant-ph]
  13. 13.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45, 118–150 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lindström, J., Nordström, J.: A stable and high-order accurate conjugate heat transfer problem. J. Comput. Phys. 229, 5440–5456 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kramer, R.M.J., Pantano, C., Pullin, D.I.: A class of energy stable, high-order finite-difference interface schemes suitable for adaptive mesh refinement of hyperbolic problems. J. Comput. Phys. 226, 1458–1484 (2007) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kramer, R.M.J., Pantano, C., Pullin, D.I.: Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids. J. Comput. Phys. 228, 5280–5297 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nissen, A., Kreiss, G., Gerritsen, M.: High order stable finite difference methods for the Schrödinger equation. Technical report nr 2011-014, Department of Information Technology, Uppsala University (2011) Google Scholar
  18. 18.
    Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, New York (1995) MATHGoogle Scholar
  20. 20.
    Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kormann, K., Holmgren, S., Karlsson, H.O.: Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. J. Chem. Phys. 128, 184101 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations