Journal of Scientific Computing

, Volume 53, Issue 2, pp 342–376 | Cite as

Adaptive Wavelet Methods on Unbounded Domains

  • Sebastian Kestler
  • Karsten UrbanEmail author


In this paper, we introduce an adaptive wavelet method for operator equations on unbounded domains. We use wavelet bases on ℝ n to equivalently express the operator equation in terms of a well-conditioned discrete problem on sequence spaces. By realizing an approximate adaptive operator application also for unbounded domains, we obtain a scheme that is convergent at an asymptotically optimal rate. We show the quantitative performance of the scheme by various numerical experiments.


Wavelets Adaptive numerical methods Unbounded domains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barinka, A.: Fast computation tools for adaptive wavelet schemes. PhD thesis, RWTH Aachen (2005) Google Scholar
  2. 2.
    Berrone, S., Kozubek, T.: An adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domains. SIAM J. Sci. Comput. 28, 2114–2138 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Canuto, C., Tabacco, A.: Ondine Biortogonali: Teoria e Applicazioni. Pitagora Editrice, Bologna (1999) zbMATHGoogle Scholar
  4. 4.
    Canuto, C., Tabacco, A., Urban, K.: The wavelet element method (Part I): Construction and analysis. Appl. Comput. Harmon. Anal. 6, 1–52 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, A.: Wavelet methods in numerical analysis. Handb. Numer. Anal. VII, 417–711 (2000) CrossRefGoogle Scholar
  6. 6.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70, 27–75 (2001) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II—beyond the elliptic case. Found. Comput. Math. 2, 203–245 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal. 41, 1785–1823 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cohen, A., Masson, R.: Wavelet adaptive method for second order elliptic problems: boundary condition and domain decomposition. Numer. Math. 86, 193–238 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dahmen, W., Harbrecht, H., Schneider, R.: Adaptive methods for boundary integral equations: complexity and convergence estimates. Math. Comput. 76, 1243–1274 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6(2), 132–196 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dijkema, T.: Adaptive tensor product wavelet methods for solving PDEs. PhD thesis, Universiteit Utrecht (2009) Google Scholar
  16. 16.
    Dijkema, T., Schwab, C., Stevenson, R.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30, 423–455 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal. 27, 1791–1815 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76, 615–629 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gantumur, T., Stevenson, R.: Computation of differential operators in wavelet coordinates. Math. Comput. 75, 697–709 (2006) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Griebel, M., Oswald, P.: Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4, 171–206 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kestler, S.: Adaptive wavelets methods for multi-dimensional problem in numerical finance. PhD thesis, Universität Ulm (2012) Google Scholar
  22. 22.
    Kestler, S., Urban, K.: Adaptive wavelet methods on unbounded domains—extended version. (2011)
  23. 23.
    Lehn, M.: FLENS—A Flexible Library for Efficient Numerical Solutions. (2008)
  24. 24.
    Lorentz, R., Oswald, P.: Criteria for hierarchical basis in Sobolev spaces. Appl. Comput. Harmon. Anal. 8, 32–85 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315, 69–87 (1989) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nitsche, P.-A.: Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx. 24, 49–70 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Schwab, C., Stevenson, R.: Adaptive wavelet algorithms for elliptic PDE’s on product domains. Math. Comput. 77, 71–92 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78, 1293–1318 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Sickel, W., Ullrich, T.: Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Stevenson, R.: On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35(5), 1110–1132 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Stevenson, R.: Adaptive methods for solving operator equations: an overview. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 543–598. Springer, Berlin (2009). Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday CrossRefGoogle Scholar
  32. 32.
    Stippler, A.: LAWA—Library for Adaptive Wavelet Applications. (2009)
  33. 33.
    Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press, Oxford (2009) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Numerical MathematicsUniversity of UlmUlmGermany

Personalised recommendations