Journal of Scientific Computing

, Volume 53, Issue 2, pp 249–267 | Cite as

Image Approximations to Electrostatic Potentials in Layered Electrolytes/Dielectrics and an Ion-Channel Model



Image charge approximations are developed for electric potentials in the Poisson-Boltzmann theory in inhomogeneous media consisting of dielectrics or electrolyte solutions such as the layered structure in a membrane or cylindrical ion-channels. The image charges are obtained either by a least square fitting between the potential of unknown images and the exact reaction potential (for the layered media or cylindrical region) or by a Prony fitting to the Fourier transform of the exact potential (layered media only) and a Sommerfeld-type identity, which yields the locations and strengths of the image charges. Next, combining the results for the two geometries, the image charge approximation for the reaction potential, due to a charge inside an ion-channel model, is obtained, which accounts for the polarization of the region outside the ion-channel (consisting of a membrane and electrolyte solutions below and above). Such an approximation to the reaction field in the ion-channel model can be used for an explicit/implicit hybrid treatment of electrostatics interaction in modeling ion-channels. Numerical tests show that the proposed method has an attractive performance in computing electrostatic interactions of source charges inside the ion-channel model via a simple summation of pairwise interactions among source and image charges.


Poisson-Boltzmann equation Layered electrolytes and dielectrics Method of images Ion channels Hybrid explicit/implicit solvent models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Honig, B., Nicholls, A.: Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995) CrossRefGoogle Scholar
  2. 2.
    Fogolari, F., Brigo, A., Molinari, H.: The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J. Mol. Biol. 15, 377–392 (2002) Google Scholar
  3. 3.
    Baker, N.A.: Improving implicit solvent simulations: A Poisson-centric view. Curr. Opin. Struct. Biol. 15, 137–143 (2005) CrossRefGoogle Scholar
  4. 4.
    Koehl, P.: Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16, 142–151 (2006) CrossRefGoogle Scholar
  5. 5.
    Wang, J., Tan, C., Tan, Y.H., Lu, Q., Luo, R.: Poisson-Boltzmann solvents in molecular dynamics simulations. Commun. Comput. Phys. 3, 1010–1031 (2008) Google Scholar
  6. 6.
    Hill, T.L.: An Introduction to Statistical Thermodynamics. Dover, New York (1986) Google Scholar
  7. 7.
    Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer, Berlin (2002) MATHGoogle Scholar
  8. 8.
    Fraenkel, D.: Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions. Mol. Phys. 108(11), 1435–1466 (2010) CrossRefGoogle Scholar
  9. 9.
    Stell, G., Joslin, C.G.: The Donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys. J. 50(5), 855–859 (1986) CrossRefGoogle Scholar
  10. 10.
    Torrie, G.M., Valleau, J.P.: Electrical double layers. 4. Limitations of the Gouy-Chapman theory. J. Phys. Chem. 86, 3251–3257 (1982) CrossRefGoogle Scholar
  11. 11.
    Zemaitis, J.F. Jr., Clark, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics. Design Institute for Physical Property Data, American Institute of Chemical Engineers, New York (1986) CrossRefGoogle Scholar
  12. 12.
    Kjellander, R., Marčelja, S.: Correlation and image charge effects in electric double layers. Chem. Phys. Lett. 112, 49–53 (1984) CrossRefGoogle Scholar
  13. 13.
    Levin, Y.: Electrostatic corrections: from plasma to biology. Rep. Prog. Phys. 65, 1577–1632 (2002) CrossRefGoogle Scholar
  14. 14.
    Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (2010) CrossRefGoogle Scholar
  15. 15.
    French, R.H., Parsegian, V.A., Podgornik, R., Rajter, R.F., Jagota, A., Luo, J., Asthagiri, D., Chaudhury, M.K., Chiang, Y.-m., Granick, S., Kalinin, S., Kardar, M., Kjellander, R., Langreth, D.C., Lewis, J., Lustig, S., Wesolowski, D., Wettlaufer, J.S., Ching, W.-Y., Finnis, M., Houlihan, F., von Lilienfeld, O.A., van Oss, C.J., Zemb, T.: Long range interactions in nanoscale science. Rev. Mod. Phys. 82(2), 1887–1944 (2010) CrossRefGoogle Scholar
  16. 16.
    Warshel, A.: A microscopic model for calculations of chemical processes in aqueous solutions. Chem. Phys. Lett. 55, 454–458 (1978) CrossRefGoogle Scholar
  17. 17.
    King, G., Warshel, A.: A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys. 91, 3647–3661 (1989) CrossRefGoogle Scholar
  18. 18.
    Beglov, D., Roux, B.: Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994) CrossRefGoogle Scholar
  19. 19.
    Alper, H., Levy, R.M.: Dielectric and thermodynamic response of a generalized reaction field model for liquid state simulations. J. Chem. Phys. 99, 9847–9852 (1993) CrossRefGoogle Scholar
  20. 20.
    Okur, A., Simmerling, C.: Hybrid explicit/implicit solvation methods. Annu. Rep. Comput. Chem. 2, 97–109 (2006) CrossRefGoogle Scholar
  21. 21.
    Lin, Y., Baumketner, A., Deng, S., Xu, Z., Jacobs, D., Cai, W.: An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions. J. Chem. Phys. 131, 154103 (2009) CrossRefGoogle Scholar
  22. 22.
    Xu, Z., Cai, W.: Fast analytical methods for macroscopic electrostatic models in biomolecular simulations. SIAM Rev. 53, 683–720 (2011) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special applications to zwitterions. J. Chem. Phys. 2, 351–361 (1934) CrossRefGoogle Scholar
  24. 24.
    Tanford, C., Kirkwood, J.G.: Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc. 79, 5333–5339 (1957) CrossRefGoogle Scholar
  25. 25.
    Friedman, H.L.: Image approximation to the reaction field. Mol. Phys. 29, 1533–1543 (1975) CrossRefGoogle Scholar
  26. 26.
    Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983–1002 (1994) CrossRefGoogle Scholar
  27. 27.
    Lindell, I.V.: Electrostatic image theory for the dielectric sphere. Radio Sci. 27, 1–8 (1992) CrossRefGoogle Scholar
  28. 28.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge (1987) Google Scholar
  30. 30.
    Cai, W., Deng, S., Jacobs, D.: Extending the fast multipole method to charges inside or outside a dielectric sphere. J. Comput. Phys. 223, 846–864 (2007) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Deng, S., Cai, W.: Discrete image approximations of ionic solvent induced reaction field to charges. Commun. Comput. Phys. 2, 1007–1026 (2007) Google Scholar
  32. 32.
    Xu, Z., Deng, S., Cai, W.: Image charge approximations of reaction fields in solvents with arbitrary ionic strength. J. Comput. Phys. 228, 2092–2099 (2009) MATHCrossRefGoogle Scholar
  33. 33.
    Qin, P., Xu, Z., Cai, W., Jacobs, D.: Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules. Commun. Comput. Phys. 6, 955–977 (2009) CrossRefGoogle Scholar
  34. 34.
    Lin, Y., Baumketner, A., Song, W., Deng, S., Jacobs, D., Cai, W.: Ionic solvation studied by image-charge reaction field method. J. Chem. Phys. 134, 044105 (2011) CrossRefGoogle Scholar
  35. 35.
    Xu, Z., Cai, W., Cheng, X.: Image charge method for reaction fields in a hybrid ion-channel model. Commun. Comput. Phys. 9, 1056–1070 (2011) MathSciNetGoogle Scholar
  36. 36.
    Cui, S.T.: Electrostatic potential in cylindrical dielectric media using the image charge method. Mol. Phys. 104, 2993–3001 (2006) CrossRefGoogle Scholar
  37. 37.
    Boda, D., Gillespie, D., Nonner, W., Henderson, D., Eisenberg, B.: Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 69(4 Pt 2), 046702 (2004) CrossRefGoogle Scholar
  38. 38.
    Cheng, M.H., Coalson, R.D.: An accurate and efficient empirical approach for calculating the dielectric self-energy and ion-ion pair potential in continuum models of biological ion channels. J. Phys. Chem. B 109(1), 488–498 (2005) CrossRefGoogle Scholar
  39. 39.
    Bardhan, J.P., Eisenberg, R.S., Gillespie, D.: Discretization of the induced-charge boundary integral equation. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 80(1), 011906 (2009) CrossRefGoogle Scholar
  40. 40.
    Levitt, D.G.: Modeling of ion channels. J. Gen. Physiol. 113, 789–794 (1999) CrossRefGoogle Scholar
  41. 41.
    Tieleman, D.P., Biggin, P.C., Smith, G.R., Sansom, M.S.P.: Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 34, 473–561 (2001) CrossRefGoogle Scholar
  42. 42.
    Roux, B., Allen, T., Berneche, S., Im, W.: Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15–103 (2004) CrossRefGoogle Scholar
  43. 43.
    Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (1992) Google Scholar
  44. 44.
    Eisenberg, B.: Crowded charges in ion channels. Adv. Chem. Phys. 148, 77–223 (2012) Google Scholar
  45. 45.
    Yang, P.K., Liaw, S.H., Lim, C.: Representing an infinite solvent system with a rectangular finite system using image charges. J. Phys. Chem. B 106, 2973–2982 (2002) CrossRefGoogle Scholar
  46. 46.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (2001) Google Scholar
  47. 47.
    Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York (1949) MATHGoogle Scholar
  48. 48.
    Chew, W.C.: Waves and Fields in Inhomogeneous Media. Van Nostrand, New York (1990) Google Scholar
  49. 49.
    Neumann, C.: Hydrodynamische untersuchungen: Nebst einem anhange uber die probleme der elektrostatik und der magnetischen induktion, pp. 279–282. Teubner, Leipzig (1883) Google Scholar
  50. 50.
    Lindell, I.V.: Application of the image concept in electromagnetism. In: Stone, W.R. (ed.) The Review of Radio Science 1990–1992, pp. 107–126. Oxford University Press, Oxford (1993) Google Scholar
  51. 51.
    Norris, W.T.: Charge images in a dielectric sphere. IEE Proc. Sci. Meas. Technol. 142, 142–150 (1995) CrossRefGoogle Scholar
  52. 52.
    Prony, R.: Essai experimental et analytique. J. Éc. Polytech. 1, 24–76 (1795) Google Scholar
  53. 53.
    Weiss, L., McDonough, R.N.: Prony’s method, z-transforms, and Padé approximation. SIAM Rev. 5, 145–149 (1963) MathSciNetCrossRefGoogle Scholar
  54. 54.
    Im, W., Beglov, D., Roux, B.: Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 111, 59–75 (1998) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Huimin Lin
    • 1
  • Zhenli Xu
    • 2
  • Huazhong Tang
    • 1
  • Wei Cai
    • 3
    • 4
  1. 1.HEDPS, CAPT & LMAM, School of Mathematical SciencesPeking UniversityBeijingP.R. China
  2. 2.Department of Mathematics, and Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Mathematics and StatisticsUniversity of North Carolina at CharlotteCharlotteUSA
  4. 4.Beijing International Center for Mathematical ResearchBeijingChina

Personalised recommendations