Advertisement

Journal of Scientific Computing

, Volume 52, Issue 3, pp 675–703 | Cite as

Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces

  • Lorenzo Botti
Article

Abstract

In this manuscript we compare physical and reference frame discontinuous Galerkin (dG) discretizations with emphasis on the influence of reference-to-physical frame mappings on the discrete space properties. We assess the excellence of physical frame discrete spaces in terms of approximation capabilities as well as the increased flexibility compared to reference frame discretizations. As a matter of fact, whenever curved elements are considered, non-affine reference-to-physical frame mappings are able to spoil the convergence properties of reference frame discrete spaces. This poorly documented drawback does not affect basis functions defined directly in the physical frame.

The convergence degradation associated to reference frame discretizations is evaluated theoretically, providing error bounds for the approximation error of the L 2-orthogonal projection operator, and the findings are justified by means of numerical test cases. In particular we exemplify by means of quadrilateral elements grids challenging grid configurations characterized by non-affine mappings and demonstrate the ability to predict the convergence rates without stringent assumptions on the element shapes.

Keywords

Discontinuous Galerkin methods Physical frame discretization Reference-to-physical frame mapping Quadrilateral elements Convergence degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comput. 71(239), 909–922 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. (2011). doi: 10.1016/j.jcp.2011.08.018 Google Scholar
  4. 4.
    Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 218, 794–815 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008) zbMATHCrossRefGoogle Scholar
  6. 6.
    Ciarlet, P.G., Raviart, P.-A.: Interpolation theory over curved elements with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1, 217–249 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Maths & Applications, vol. 69. Springer, Berlin (2011) Google Scholar
  8. 8.
    Ern, A., Guermond, J.-L.: Eléments finís: théorie, applications, mise en œuvre. Mathématiques & Applications, vol. 36. Springer, Berlin (2002) zbMATHGoogle Scholar
  9. 9.
    Gassner, G.J., Lörcher, F., Munz, C.-D., Hesthaven, J.S.: Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys. 228, 1573–1590 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Georgoulis, E.H.: hp-version interior penalty discontinuous Galerkin finite element methods on anisotropic meshes. Int. J. Numer. Anal. Model. 3, 52–79 (2006) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Karniadakis, G.E., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005) CrossRefGoogle Scholar
  12. 12.
    Kikuchi, F., Okabe, M., Fujio, H.: Modification of the 8-node serendipity element. Comput. Methods Appl. Mech. Eng. 179, 91–109 (1999) zbMATHCrossRefGoogle Scholar
  13. 13.
    Kurtz, J., Xenophontos, C.: On the effects of using curved elements in the approximation of the Reissner–Mindlin plate by the p version of the finite element method. Appl. Numer. Math. 46, 231–246 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    McNeal, R.H., Harder, R.L.: Eight nodes or nine? Int. J. Numer. Methods Eng. 33, 1049–1058 (1992) CrossRefGoogle Scholar
  15. 15.
    Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) zbMATHGoogle Scholar
  16. 16.
    Suri, M.: Analytical and computational assessment of locking in the hp finite element method. Comput. Methods Appl. Mech. Eng. 133, 347–371 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tesini, P.: An h-multigrid approach for high-order discontinuous Galerkin methods. Ph.D. thesis, Università degli Studi di Bergamo, January 2008 Google Scholar
  18. 18.
    Xiao, H., Gimbutas, Z.: A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 59, 663–676 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang, J., Kikuchi, F.: Interpolation error estimates of a modified 8-node serendipity finite element. Numer. Math. 85, 503–524 (2000) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria IndustrialeUniversità degli Studi Di BergamoDalmineItaly
  2. 2.Biomedical Engineering DepartmentMario Negri Institute for Pharmacological ResearchRanicaItaly

Personalised recommendations