Journal of Scientific Computing

, Volume 52, Issue 3, pp 546–562 | Cite as

A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection

  • Wenbin Chen
  • Sidafa Conde
  • Cheng Wang
  • Xiaoming Wang
  • Steven M. Wise
Article

Abstract

We present a linear numerical scheme for a model of epitaxial thin film growth without slope selection. The PDE, which is a nonlinear, fourth-order parabolic equation, is the L 2 gradient flow of the energy \(\int_{\Omega}( - \frac{1}{2} \ln(1 + |\nabla\phi|^{2} ) + \frac{\epsilon^{2}}{2}|\Delta\phi(\mathbf{x})|^{2})\,\mathrm{d}\mathbf{x}\). The idea of convex-concave decomposition of the energy functional is applied, which results in a numerical scheme that is unconditionally energy stable, i.e., energy dissipative. The particular decomposition used here places the nonlinear term in the concave part of the energy, in contrast to a previous convexity splitting scheme. As a result, the numerical scheme is fully linear at each time step and unconditionally solvable. Collocation Fourier spectral differentiation is used in the spatial discretization, and the unconditional energy stability is established in the fully discrete setting using a detailed energy estimate. We present numerical simulation results for a sequence of ϵ values ranging from 0.02 to 0.1. In particular, the long time simulations show the −log(t) decay law for the energy and the t 1/2 growth law for the surface roughness, in agreement with theoretical analysis and experimental/numerical observations in earlier works.

Keywords

Epitaxial thin film growth Slope selection Energy stability Convexity splitting Fourier collocation spectral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrlich, G., Hudda, F.G.: Atomic view of surface diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1036–1099 (1966) Google Scholar
  2. 2.
    Evans, J.W., Thiel, P.A., Bartelt, M.C.: Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61, 1–128 (2006) CrossRefGoogle Scholar
  3. 3.
    Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998) Google Scholar
  4. 4.
    Guan, Z., Wang, C., Wise, S.M.: Convergence of a convex splitting scheme for the nonlocal Cahn-Hilliard Equation (in preparation) Google Scholar
  5. 5.
    Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the Phase Field Crystal equation. J. Comput. Phys. 228, 5323–5339 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., Orr, B.G.: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116–119 (1994) CrossRefGoogle Scholar
  7. 7.
    Kohn, R.V.: Energy-driven pattern formation. In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–383. European Mathematical Society Publishing House, Madrid (2006) Google Scholar
  8. 8.
    Kohn, R.V., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Li, B.: High-order surface relaxation versus the Ehrlich-Schwoebel effect. Nonlinearity 19, 2581–2603 (2006) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection, Euro. J. Appl. Math. 14, 713–743 (2003) MATHGoogle Scholar
  11. 11.
    Li, B., Liu, J.-G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000) Google Scholar
  13. 13.
    Schwoebel, R.L.: Step motion on crystal surfaces: II. J. Appl. Phys. 40, 614–618 (1969) CrossRefGoogle Scholar
  14. 14.
    Wise, S.M., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the Phase Field Crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst., Ser. A 28, 405–423 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wenbin Chen
    • 1
  • Sidafa Conde
    • 2
  • Cheng Wang
    • 2
  • Xiaoming Wang
    • 3
  • Steven M. Wise
    • 4
  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.Department of MathematicsU. MassachusettsDartmouth, North DartmouthUSA
  3. 3.Department of MathematicsFlorida State U.TallahasseeUSA
  4. 4.Department of MathematicsU. of TennesseeKnoxvilleUSA

Personalised recommendations