A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements
- 544 Downloads
- 53 Citations
Abstract
The flux reconstruction (FR) approach allows various well-known high-order schemes, such as collocation based nodal discontinuous Galerkin (DG) methods and spectral difference (SD) methods, to be cast within a single unifying framework. Recently, the authors identified a new class of FR schemes for 1D conservation laws, which are simple to implement, efficient and guaranteed to be linearly stable for all orders of accuracy. The new schemes can easily be extended to quadrilateral elements via the construction of tensor product bases. However, for triangular elements, such a construction is not possible. Since numerical simulations over complicated geometries often require the computational domain to be tessellated with simplex elements, the development of stable FR schemes on simplex elements is highly desirable. In this article, a new class of energy stable FR schemes for triangular elements is developed. The schemes are parameterized by a single scalar quantity, which can be adjusted to provide an infinite range of linearly stable high-order methods on triangular elements. Von Neumann stability analysis is conducted on the new class of schemes, which allows identification of schemes with increased explicit time-step limits compared to the collocation based nodal DG method. Numerical experiments are performed to confirm that the new schemes yield the optimal order of accuracy for linear advection on triangular grids.
Keywords
High-order methods Flux reconstruction Nodal discontinuous Galerkin method Triangular elements StabilityPreview
Unable to display preview. Download preview PDF.
References
- 1.Carpenter, M.H., Kennedy, C.: Fourth-order 2n-storage Runge-Kutta schemes. Technical Report TM 109112, NASA, NASA Langley Research Center (1994) Google Scholar
- 2.Castonguay, P., Liang, C., Jameson, A.: Simulation of transitional flow over airfoils using the spectral difference method. In: 40th AIAA Fluid Dynamics Conference, Chicago, IL, June 28–July 1 (2010). AIAA Paper, 2010-4626 Google Scholar
- 3.Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989) MathSciNetzbMATHGoogle Scholar
- 4.Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991) MathSciNetzbMATHGoogle Scholar
- 5.Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case. Math. Comput. 54(190), 545–581 (1990) MathSciNetzbMATHGoogle Scholar
- 8.Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007) Google Scholar
- 10.Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, Jun 25–28 (2007). AIAA Paper, 4079 Google Scholar
- 11.Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. In: 47th AIAA Aerospace Sciences Meeting, Orlando, FL, Jan 5–8 (2009). AIAA Paper, 403 Google Scholar
- 12.Jameson, A.: A proof the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1–3), 348–358 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Kannan, R., Wang, Z.J.: A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J. Sci. Comput. 41(2), 165–199 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Kannan, R., Wang, Z.J.: LDG2: A variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput. 46(2), 314–328 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Liang, C., Kannan, R., Wang, Z.J.: A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Comput. Fluids 38, 254–265 (2009) MathSciNetCrossRefGoogle Scholar
- 17.Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids i: Basic formulation. J. Comput. Phys. 216, 780–801 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Raviart, P.A., Thomas, J.M.: A mixed hybrid finite element method for the second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lectures Notes in Mathematics. Springer, Berlin (1977) Google Scholar
- 19.Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973) Google Scholar
- 20.Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Van den Abeele, K., Lacor, C., Wang, Z.J.: On the stability and accuracy of the spectral difference method. J. Sci. Comput. 37(2), 162–188 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228(21), 8161–8186 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: Extension to the Euler equations. J. Sci. Comput. 32, 45–71 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13(3), 395–414 (2003) MathSciNetzbMATHCrossRefGoogle Scholar