Journal of Scientific Computing

, Volume 51, Issue 1, pp 28–58 | Cite as

A Two-Step Certified Reduced Basis Method

  • J. L. Eftang
  • D. B. P. Huynh
  • D. J. Knezevic
  • A. T. Patera
Open Access
Article

Abstract

In this paper we introduce a two-step Certified Reduced Basis (RB) method. In the first step we construct from an expensive finite element “truth” discretization of dimension \({\mathcal{N}} \) an intermediate RB model of dimension \(N\ll {\mathcal{N}}\). In the second step we construct from this intermediate RB model a derived RB (DRB) model of dimension MN. The construction of the DRB model is effected at cost \({\mathcal{O}}(N)\) and in particular at cost independent of \({\mathcal{N}}\); subsequent evaluation of the DRB model may then be effected at cost \({\mathcal{O}}(M)\). The DRB model comprises both the DRB output and a rigorous a posteriori error bound for the error in the DRB output with respect to the truth discretization.

The new approach is of particular interest in two contexts: focus calculations and hp-RB approximations. In the former the new approach serves to reduce online cost, MN: the DRB model is restricted to a slice or subregion of a larger parameter domain associated with the intermediate RB model. In the latter the new approach enlarges the class of problems amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in the development of the hp parameter domain partition and associated “local” (now derived) RB models the finite element truth is replaced by the intermediate RB model. We present numerical results to illustrate the new approach.

Keywords

Two-step model reduction Derived reduced basis Focus calculations hp reduced basis 

References

  1. 1.
    Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528 (1978) CrossRefGoogle Scholar
  2. 2.
    Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Sér. I 339, 667–672 (2004) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Boyaval, S.: Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7(1), 466–494 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Boyaval, S., Le Bris, C., Maday, Y., Nguyen, N.C., Patera, A.T.: A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable robin coefficient. Comput. Methods Appl. Mech. Eng. 198(41–44), 3187–3206 (2009) MATHCrossRefGoogle Scholar
  5. 5.
    Canuto, C., Tonn, T., Urban, K.: A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear PDEs. SIAM J. Numer. Anal. 47(3), 2001–2022 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Eftang, J.L., Knezevic, D.J., Patera, A.T.: An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. (2011, accepted) Google Scholar
  7. 7.
    Eftang, J.L., Patera, A.T., Rønquist, E.M.: An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996) MATHGoogle Scholar
  9. 9.
    Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Modél. Math. Anal. Numér. 39(1), 157–181 (2005) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced basis treatment of nonaffine and nonlinear partial differential equations. ESAIM, Math. Model. Numer. Anal. 41(3), 575–605 (2007) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parametrized model reduction based on adaptive Grids in parameter space. Technical report 28, SRC SimTech (2010) Google Scholar
  12. 12.
    Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM, Math. Model. Numer. Anal. 42(2), 277–302 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. (2011). doi:10.1080/13873954.2010.514703 Google Scholar
  14. 14.
    Huynh, D.B.P., Knezevic, D.J., Patera, A.T.: Certified reduced basis model characterization: a frequentistic uncertainty framework. Comput. Methods Appl. Mech. Eng. (submitted January 2011). http://augustine.mit.edu/methodology/papers/atp_CMAME_preprint_Jan2011.pdf
  15. 15.
    Huynh, D.B.P., Knezevic, D.J., Peterson, J.W., Patera, A.T.: High-fidelity real-time simulation on deployed platforms. Comput. Fluids (2010). doi:10.1016/j.compfluid.2010.07.007 Google Scholar
  16. 16.
    Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199(29–32), 1963–1975 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345(8), 473–478 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kamon, M., Wang, F., White, J.: Generating nearly optimally compact models from Krylov-subspace based reduced-order models. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 47(4), 239–248 (2000) CrossRefGoogle Scholar
  19. 19.
    Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006) CrossRefGoogle Scholar
  20. 20.
    Knezevic, D.J., Patera, A.T.: A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids: Fene dumbbells in extensional flow. SIAM J. Sci. Comput. 32(2), 793–817 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Knezevic, D.J., Peterson, J.W.: A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. (2010, accepted), http://augustine.mit.edu/methodology/papers/djk_CMAME_preprint_December2010.pdf
  22. 22.
    Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981) MATHCrossRefGoogle Scholar
  23. 23.
    Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real-Time Bayesian Parameter Estimation. Wiley, New York (2010), pp. 151–177 Google Scholar
  24. 24.
    Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18, 455–462 (1980) CrossRefGoogle Scholar
  25. 25.
    Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45, 487–496 (1985) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Udawalpola, R., Berggren, M.: Optimization of an acoustic horn with respect to efficiency and directivity. Int. J. Numer. Methods Eng. 73, 1571–1606 (2008) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference. AIAA Paper, vol. 2003-3847. (2003) Google Scholar
  29. 29.
    Willcox, K., Megretski, A.: Fourier series for accurate, stable, reduced-order models in large-scale linear applications. SIAM J. Sci. Comput. 26(3), 944–962 (2005) (electronic) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • J. L. Eftang
    • 1
  • D. B. P. Huynh
    • 2
  • D. J. Knezevic
    • 2
  • A. T. Patera
    • 2
  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations