Journal of Scientific Computing

, Volume 50, Issue 1, pp 29–62

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

Article

Abstract

In Zhang and Shu (J. Comput. Phys. 229:3091–3120, 2010), two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in Zhang and Shu (J. Comput. Phys. 229:8918–8934, 2010). The extension of these schemes to triangular meshes is conceptually plausible but highly nontrivial. In this paper, we first introduce a special quadrature rule which is exact for two-variable polynomials over a triangle of a given degree and satisfy a few other conditions, by which we can construct high order maximum principle satisfying finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or DG method solving two dimensional scalar conservation laws on triangular meshes. The same method can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation, or any passive convection equation with an incompressible velocity field. We also obtain positivity preserving (for density and pressure) high order DG or finite volume schemes solving compressible Euler equations on triangular meshes. Numerical tests for the third order Runge-Kutta DG (RKDG) method on unstructured meshes are reported.

Keywords

Hyperbolic conservation laws Finite volume scheme Discontinuous Galerkin method Essentially non-oscillatory scheme Weighted essentially non-oscillatory scheme Maximum principle Positivity preserving High order accuracy Strong stability preserving time discretization Passive convection equation Incompressible flow Compressible Euler equations Triangular meshes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, S., Chang, K.: On the shock-vortex interaction in Schardin’s problem. Shock Waves 10, 333–343 (2000) CrossRefMATHGoogle Scholar
  2. 2.
    Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989) MATHMathSciNetGoogle Scholar
  3. 3.
    Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) MATHGoogle Scholar
  5. 5.
    Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ha, Y., Gardner, C., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 597–612 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991) Google Scholar
  10. 10.
    Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Niceno, B.: EasyMesh Version 1.4: a two-dimensional quality mesh generator (2001). Available from: http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
  14. 14.
    Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Sambasivan, S.K., UdayKumar, H.S.: Ghost fluid method for strong shock interactions part 2: immersed solid boundaries. AIAA J. 47, 2923–2937 (2009) CrossRefGoogle Scholar
  16. 16.
    Schardin, H.: High frequency cinematography in the shock tube. J. Photosci. 5, 19–26 (1957) Google Scholar
  17. 17.
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959) MATHGoogle Scholar
  18. 18.
    Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) CrossRefMATHGoogle Scholar
  19. 19.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719 (1967) CrossRefGoogle Scholar
  21. 21.
    Sun, M., Takayama, K.: The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7, 287–295 (1997) CrossRefMATHGoogle Scholar
  22. 22.
    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations