Advertisement

Journal of Scientific Computing

, Volume 48, Issue 1–3, pp 117–140 | Cite as

On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System

  • E. D. Fernández-Nieto
  • M. J. Castro Díaz
  • C. Parés
Article

Abstract

The goal of this article is to design a new approximate Riemann solver for the two-layer shallow water system which is fast compared to Roe schemes and accurate compared to Lax-Friedrichs, FORCE, or GFORCE schemes (see Castro et al. in Math. Comput. 79:1427–1472, 2010). This Riemann solver is based on a suitable decomposition of a Roe matrix (see Toumi in J. Comput. Phys. 102(2):360–373, 1992) by means of a parabolic viscosity matrix (see Degond et al. in C. R. Acad. Sci. Paris 1 328:479–483, 1999) that captures some information concerning the intermediate characteristic fields. The corresponding first order numerical scheme, which is called IFCP (Intermediate Field Capturing Parabola) is linearly L -stable, well-balanced, and it doesn’t require an entropy-fix technique. Some numerical experiments are presented to compare the behavior of this new scheme with Roe and GFORCE methods.

Keywords

Finite volume method Path-conservative Two-layer shallow water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31, 1603–1627 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Audusse, E.: A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst., Ser. B 5, 189–214 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Audusse, E., Bristeau, M.O.: Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17, 311–319 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouchut, F., Morales de Luna, T.: An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. M2AN Math. Model. Numer. Anal. 42, 683–698 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Castro, M.J., Macías, J., Parés, C.: A Q-Scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Model. Numer. Anal 35(1), 107–127 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: applications to one-layer and two-layer systems. Math. Comput. Model. 42(3–4), 419–439 (2005) zbMATHCrossRefGoogle Scholar
  9. 9.
    Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems. Math. Comput. 75, 1103–1134 (2006) zbMATHCrossRefGoogle Scholar
  10. 10.
    Castro, M.J., Chacón, T., Fernández, E.D., Parés, C.: On well-balanced finite volume methods for non-conservative non-homogeneous hyperbolic systems. SIAM J. Sci. Comput. 29, 1093–1126 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Castro, M.J., Pardo, A., Parés, C.: Well-Balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17, 2055–2113 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Castro, M.J., LeFloch, P.G., Muñoz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 3227, 8107–8129 (2008) CrossRefGoogle Scholar
  13. 13.
    Castro, M.J., Fernández, E.D., Ferreiro, A.M., García, J.A., Parés, C.: High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010) zbMATHGoogle Scholar
  15. 15.
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Degond, P., Peyrard, P.F., Russo, G., Villedieu, Ph.: Polynomial upwind schemes for hyperbolic systems. C. R. Acad. Sci. Paris 1 328, 479–483 (1999) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Dumbser, M., Castro, M.J., Parés, C., Toro, E.F.: ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731–1748 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Farmer, D., Armi, L.: Maximal two-layer exchange over a sill and through a combination of a sill and contraction with barotropic flow. J. Fluid Mech. 164, 53–76 (1986) zbMATHCrossRefGoogle Scholar
  19. 19.
    Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Castro, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227(16), 7720–7754 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31, 1742–1773 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Parés, C., Castro, M.J.: On the well-balance property of Roes method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Model. Numer. Anal. 38(5), 821–852 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363, 1573–1601 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Schijf, J.B., Schonfeld, J.C.: Theoretical considerations on the motion of salt and fresh water. In: Proc. of the Minn. Int. Hydraulics Conv., Joint meeting IAHR and Hyd. Div. ASCE., Sept., pp. 321–333 (1953) Google Scholar
  27. 27.
    Toumi, I.: A weak formulation of Roe approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. D. Fernández-Nieto
    • 1
  • M. J. Castro Díaz
    • 2
  • C. Parés
    • 2
  1. 1.Departamento de Matemática Aplicada IUniversidad de SevillaSevillaSpain
  2. 2.Dpto. Análisis MatemáticoUniversidad de MálagaMalagaSpain

Personalised recommendations