Advertisement

Journal of Scientific Computing

, Volume 47, Issue 3, pp 365–388 | Cite as

A Generic Stabilization Approach for Higher Order Discontinuous Galerkin Methods for Convection Dominated Problems

  • Andreas Dedner
  • Robert KlöfkornEmail author
Article

Abstract

In this paper we present a stabilized Discontinuous Galerkin (DG) method for hyperbolic and convection dominated problems. The presented scheme can be used in several space dimension and with a wide range of grid types. The stabilization method preserves the locality of the DG method and therefore allows to apply the same parallelization techniques used for the underlying DG method. As an example problem we consider the Euler equations of gas dynamics for an ideal gas. We demonstrate the stability and accuracy of our method through the detailed study of several test cases in two space dimension on both unstructured and cartesian grids. We show that our stabilization approach preserves the advantages of the DG method in regions where stabilization is not necessary. Furthermore, we give an outlook to adaptive and parallel calculations in 3d.

Keywords

Conservation laws Higher order methods Discontinuous Galerkin Finite volume Generic limiter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in Dune. Computing 82(2–3), 121–138 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82(2–3), 103–119 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Burbeau, A., Sagaut, P., Bruneau, Ch.-H.: A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227(11), 5736–5757 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dedner, A., Klöfkorn, R.: A generic stabilization approach for higher order discontinuous Galerkin methods for convection dominated problems. Preprint No. 8, Universität Freiburg (2008) Google Scholar
  8. 8.
    Dedner, A., Klöfkorn, R.: Stabilization for discontinuous Galerkin methods applied to systems of conservation laws. In: Proc. of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Maryland (2008) Google Scholar
  9. 9.
    Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: Abstraction principles and the Dune-Fem module. Preprint No. 3, Mathematisches Institut, Universität Freiburg (2009) Google Scholar
  10. 10.
    Dedner, A., Makridakis, C., Ohlberger, M.: Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45(2), 514–538 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dolejší, V., Feistauer, M., Schwab, C.: On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simul. 61(3–6), 333–346 (2003) CrossRefzbMATHGoogle Scholar
  12. 12.
    Ern, A., Proft, J.: A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations. Appl. Math. Lett. 18(7), 833–841 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hagen, T.R., Lie, K.-A., Natvig, J.R.: Solving the Euler equations on graphics processing units. In: Alexandrov V.N., et al. (eds.) Proceedings, Part IV, Computational Science—ICCS 2006. 6th International Conference, Reading, UK, 28–31 May, 2006. Lecture Notes in Computer Science, vol. 3994, pp. 220–227. Springer, Berlin (2006) Google Scholar
  15. 15.
    Hoteit, H., Ackerer, Ph., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Methods Eng. 61(14), 2566–2593 (2004) CrossRefzbMATHGoogle Scholar
  16. 16.
    Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1–3), 404–419 (2006) CrossRefzbMATHGoogle Scholar
  17. 17.
    Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3–4), 323–338 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, Teubner, New York, Leipzig (1997) zbMATHGoogle Scholar
  20. 20.
    Kröner, D., Ohlberger, M.: A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput. 69, 25–39 (2000) zbMATHGoogle Scholar
  21. 21.
    Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225(1), 686–713 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting, AIAA-2006-0112, Reno, Nevada, Department of Aeronautics & Astronautics. Massachusetts Institute of Technology (2006) Google Scholar
  23. 23.
    Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27(3), 995–1013 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Wesenberg, M.: Efficient finite—volume schemes for magnetohydrodynamics simulations in solar physics. Ph.D. thesis, Universität Freiburg (2003) Google Scholar
  27. 27.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Xin, Jianguo, Flaherty, Joseph E.: Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws. Appl. Numer. Math. 56(3–4), 444–458 (2006) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Applied MathematicsUniversity of FreiburgFreiburgGermany

Personalised recommendations