Advertisement

Journal of Scientific Computing

, Volume 48, Issue 1–3, pp 258–273 | Cite as

A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model

  • T. Morales de LunaEmail author
  • M. J. Castro Díaz
  • C. Parés Madroñal
Article

Abstract

This article focuses on the simulation of the sediment transport by a fluid in contact with a sediment layer. This phenomena can be modelled by using a coupled model constituted by a hydrodynamical component, described by a shallow water system, and a morphodynamical one, which depends on a solid transport flux given by some empirical law. The solid transport discharge proposed by Meyer-Peter & Müller is one of the most popular but it has the inconvenient of not including pressure forces. Due to this, this formula produces numerical simulations that are not realistic in zones where gravity effects are relevant, e.g. advancing front of the sand layer. Moreover, the thickness of the sediment layer is not taken into account and, as a consequence, mass conservation of sediment may fail. Fowler et al. proposed a generalization that takes into account gravity effects as well as the thickness of the sediment layer which is in better agreement with the physics of the problem. We propose to solve this system by using a path-conservative scheme for the hydrodynamical part and a duality method based on Bermúdez-Moreno algorithm for the morphodynamical component.

Keywords

Sediment transport Shallow water Finite volume methods Path-conservative schemes Duality method Numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermúdez, A., Moreno, C.: Duality methods for solving variational inequalities. Comput. Math. Appl. 7, 43–58 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Castro Díaz, M., Fernández-Nieto, E., Ferreiro, A.: Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. Comput. Fluids 37(3), 299–316 (2008) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Castro Díaz, M., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fowler, A.C., Kopteva, N., Oakley, C.: The formation of river channels. SIAM J. Appl. Math. 67(4), 1016–1040 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grass, A.: Sediment transport by waves and currents. SERC London Cent. Mar. Technol, Report No. FL29 (1981) Google Scholar
  6. 6.
    Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. In: 2nd Meeting IAHSR, Stockholm, Sweden, pp. 1–26. (1948) Google Scholar
  7. 7.
    Muñoz, M.L., Parés, C.: On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws. J. Sci. Comput. (2010). doi: 10.1007/s10915-010-9425-7
  8. 8.
    Nielsen, P.: Coastal Bottom Boundary Layers and Sediment Transport. Singapore, World Scientific (1992) CrossRefGoogle Scholar
  9. 9.
    Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006) (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Parés, C., Castro, M.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. Modél. Math. Anal. Numér. 38(5), 821–852 (2004) zbMATHCrossRefGoogle Scholar
  11. 11.
    Parés, C., Castro, M., Macías, J.: On the convergence of the Bermúdez-Moreno algorithm with constant parameters. Numer. Math. 92(1), 113–128 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Parés, C., Macías, J., Castro, M.: Duality methods with an automatic choice of parameters. Application to shallow water equations in conservative form. Numer. Math. 89(1), 161–189 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Van Rijn, L.: Sediment transport: bed load transport. J. Hydraul. Eng. 110(10), 1431–1456 (1984) CrossRefGoogle Scholar
  14. 14.
    Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • T. Morales de Luna
    • 1
    Email author
  • M. J. Castro Díaz
    • 2
  • C. Parés Madroñal
    • 2
  1. 1.Dpto. de MatemáticasUniversidad de CórdobaCórdobaSpain
  2. 2.Dpto. Análisis MatemáticoUniversidad de MálagaMálagaSpain

Personalised recommendations