Journal of Scientific Computing

, Volume 47, Issue 3, pp 281–302 | Cite as

Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes

  • Changna Lu
  • Jianxian Qiu


In this paper we study a Lax-Wendroff-type time discretization procedure for the finite difference weighted essentially non-oscillatory (WENO) schemes to solve one-dimensional and two-dimensional shallow water equations with source terms. In order to maintain genuinely high order accuracy and suit to problems with a rapidly varying bottom topography we use WENO reconstruction not only to the flux but also to the source terms of algebraical modified shallow water equations. Extensive simulations are performed, as a result, the WENO schemes with Lax-Wendroff-type time discretization can maintain nonoscillatory properties and more cost effective than that with Runge-Kutta time discretization.


Lax-Wendroff-type time discretization Weighted essentially non-oscillatory schemes Shallow water equations High order accuracy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aràndiga, F., Belda, A.M., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43, 158–182 (2009) CrossRefGoogle Scholar
  2. 2.
    Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5054 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cai, Y., Navon, I.M.: Parallel block preconditioning techniques for the numerical simulation of the shallow water flow using finite element methods. J. Comput. Phys. 122, 39–50 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chleffi, V., Valaini, A., Zanni, A.: Finite volume method for simulating extreme flood events in natural channels. J. Hydraul. Res. 41, 167–177 (2003) CrossRefGoogle Scholar
  6. 6.
    Goutal, N., Maurel, F.: In: Proceedings of the Second Workshop on Dam-BreakWave Simulation. Technical Report HE-43/97/016/A. Electricité de France, Département Laboratoire National Hydraulique, Groupe Hydraulique Fluviale (1997) Google Scholar
  7. 7.
    Harten, A., Engguist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov method: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 346, 146 (1998) MathSciNetGoogle Scholar
  10. 10.
    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Qiu, J.X., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ricchiuto, M., Abgrall, R., Deconinck, H.: Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys. 222, 287–331 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Rogers, B.D., Borthwick, Alistair G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 192, 422–451 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Shu, C.W.: Essential non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998). A. Quarteroni (ed.) CrossRefGoogle Scholar
  15. 15.
    Vukovic, S., Sopta, L.: ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 179, 593–621 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Xing, Y.L., Shu, C.W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zahran, Y.H.: An efficient WENO scheme for solving hyperbolic conservation laws. Appl. Math. Comput. 212, 37–50 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the shallow water equations. J. Comput. Phys. 168, 1–25 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Zhu, J., Qiu, J.X.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes. J. Sci. Comput. 39, 293–321 (2009) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Mathematics & PhysicsNanjing University of Information Science & TechnologyNanjingP.R. China
  2. 2.Department of MathematicsNanjing UniversityNanjingP.R. China
  3. 3.School of Mathematical SciencesXiamen UniversityXiamenP.R. China

Personalised recommendations