Journal of Scientific Computing

, Volume 48, Issue 1–3, pp 16–40 | Cite as

Numerical Treatment of the Loss of Hyperbolicity of the Two-Layer Shallow-Water System

  • M. J. Castro-Díaz
  • E. D. Fernández-Nieto
  • J. M. González-Vida
  • C. Parés-Madroñal


This article is devoted to the numerical solution of the inviscid two-layer shallow water system. This system may lose the hyperbolic character when the shear between the layer is big enough. This loss of hyperbolicity is related to the appearance of shear instabilities that leads, in real flows, to intense mixing of the two layers that the model is not able to simulate. The strategy here is to add some extra friction terms, which are supposed to parameterize the loss of mechanical energy due to mixing, to get rid of this difficulty. The main goal is to introduce a technique allowing one to add locally and automatically an ‘optimal’ amount of shear stress to make the flow to remain in the hyperbolicity region. To do this, first an easy criterium to check the hyperbolicity of the system for a given state is proposed and checked. Next, we introduce a predictor/corrector strategy. In the predictor stage, a numerical scheme is applied to the system without extra friction. In the second stage, a discrete semi-implicit linear friction law is applied at any cell in which the predicted states are not in the hyperbolicity region. The coefficient of this law is calculated so that the predicted states are driven to the boundary of the hyperbolicity region according to the proposed criterium. The numerical scheme to be used at the first stage has to be able to advance in time in presence of complex eigenvalues: we propose here a family of path-conservative numerical scheme having this property. Finally, some numerical tests have been performed to assess the efficiency of the proposed strategy.


Finite volume method Path-conservative Two-layer shallow water Complex eigenvalues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31, 1603–1627 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Audusse, E.: A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst., Ser. B 5, 189–214 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Audusse, E., Bristeau, M.O.: Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17, 311–319 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouchut, F., Morales de Luna, T.: An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. Math. Model. Numer. Anal. 42, 683–698 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouchut, F., Zeitlin, V.: A robust well-balanced scheme for multi-layer shallow water equations. Discrete Contin. Dyn Syst., Ser. B 13(4), 739–758 (2010) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Castro, M.J., Macías, J., Parés, C.: A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. Math. Model. Numer. Anal. 35(1), 107–127 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Castro, M.J., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: Numerical simulation of two layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195(1), 202–235 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: applications to one-layer and two-layer systems. Math. Comput. Model. 42(3–4), 419–439 (2005) zbMATHCrossRefGoogle Scholar
  9. 9.
    Castro, M.J., Gallardo, J.J., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75, 1103–1134 (2006) zbMATHCrossRefGoogle Scholar
  10. 10.
    Castro, M.J., García, J.A., González, J.M., Parés, C.: A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: application to shallow flows. Comput. Methods Appl. Mech. Eng. 196, 2788–2815 (2006) CrossRefGoogle Scholar
  11. 11.
    Castro, M.J., Chacón, T., Fernández, E.D., Parés, C.: On well-balanced finite volume methods for non-conservative non-homogeneous hyperbolic systems. SIAM J. Sci. Comput. 29, 1093–1126 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Castro, M.J., Pardo, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17, 2055–2113 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Castro, M.J., LeFloch, P.G., Muñoz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 3227, 8107–8129 (2008) CrossRefGoogle Scholar
  14. 14.
    Castro, M.J., Fernández, E.D., Ferreiro, A.M., García, J.A., Parés, C.: High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010) zbMATHGoogle Scholar
  16. 16.
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Dumbser, M., Castro, M.J., Parés, C., Toro, E.F.: ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731–1748 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fernández-Nieto, E.D.: Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Ph.D. Thesis, Univ. Sevilla (2003) Google Scholar
  19. 19.
    Fernández, E.D., Bouchut, F., Bresh, D., Castro, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    García Rodríguez, J.A.: Paralelización de esquemas de volúmenes finitos: aplicación a la resolución de sistemas de tipo aguas someras. Ph.D. Thesis, Univ. Málaga (2005) Google Scholar
  21. 21.
    Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975) zbMATHGoogle Scholar
  22. 22.
    Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31, 1742–1773 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Parés, C., Castro, M.J.: On the well-balance property of Roes method for nonconservative hyperbolic systems. Applications to Shallow-Water Systems. Model. Math. Anal. Numer. 38(5), 821–852 (2004) zbMATHCrossRefGoogle Scholar
  25. 25.
    Parés, C., Muñoz-Ruiz, M.L.: On some difficulties of the numerical approximation of nonconservative hyperbolic systems. Bol. Soc. Esp. Mat. Apl. 47, 23–52 (2009) Google Scholar
  26. 26.
    Pelanti, M., Bouchut, F., Mangeney, A.: A Roe-type scheme for two-phase shallow granular flows over variable topography. Model. Math. Anal. Numer. 42, 851–885 (2008) (Highlight paper) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Schijf, J.B., Schonfeld, J.C.: Theoretical considerations on the motion of salt and fresh water. In: Proc. of the Minn. Int. Hydraulics Conv., pp. 321–333. Joint meeting IAHR and Hyd. Div. ASCE, Sept. 1953 Google Scholar
  28. 28.
    Toumi, I.: A weak formulation of Roe approximate Riemann solver. J. Comput. Phys. 102(2), 360–373 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Volpert, A.I.: Spaces BV and quasilinear equations. Math. USSR Sb. 73, 255–302 (1967) MathSciNetGoogle Scholar
  30. 30.
    Zabsonré, J., Narbona-Reina, G.: Existence of a global weak solution for a 2D viscous bi-layer shallow water model. Nonlinear Anal. Real World Appl. 5, 2971–2984 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. J. Castro-Díaz
    • 1
  • E. D. Fernández-Nieto
    • 2
  • J. M. González-Vida
    • 3
  • C. Parés-Madroñal
    • 1
  1. 1.Dpto. Análisis MatemáticoUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Matemática Aplicada I, E.T.S. ArquitecturaUniversidad de SevillaSevillaSpain
  3. 3.Dpto. de Matemática AplicadaUniversidad de MálagaMálagaSpain

Personalised recommendations