Advertisement

Journal of Scientific Computing

, Volume 47, Issue 1, pp 109–125 | Cite as

An Irregularly Portioned Lagrangian Monte Carlo Method for Turbulent Flow Simulation

  • S. L. YılmazEmail author
  • M. B. Nik
  • M. R. H. Sheikhi
  • P. A. Strakey
  • P. Givi
Article

Abstract

A novel computational methodology, termed “Irregularly Portioned Lagrangian Monte Carlo” (IPLMC) is developed for large eddy simulation (LES) of turbulent flows. This methodology is intended for use in the filtered density function (FDF) formulation and is particularly suitable for simulation of chemically reacting flows on massively parallel platforms. The IPLMC facilitates efficient simulations, and thus allows reliable prediction of complex turbulent flames. Sample results are presented of LES of both premixed and non-premixed flames via this method, and the results are assessed via comparison with laboratory data.

Keywords

Domain decomposition Large eddy simulation Turbulent combustion Filtered density function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  2. 2.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Philadelphia (2005) Google Scholar
  3. 3.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005) CrossRefGoogle Scholar
  4. 4.
    Givi, P.: Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44(1), 16–23 (2006) CrossRefGoogle Scholar
  5. 5.
    Givi, P.: Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci. 15, 1–107 (1989) CrossRefGoogle Scholar
  6. 6.
    Pope, S.B.: Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990) Google Scholar
  7. 7.
    Madnia, C.K., Givi, P.: Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence. In: Galperin, B., Orszag, S.A. (eds.) Large Eddy Simulations of Complex Engineering and Geophysical Flows, chap. 15, pp. 315–346. Cambridge University Press, Cambridge (1993) Google Scholar
  8. 8.
    Frankel, S.H., Adumitroaie, V., Madnia, C.K., Givi, P.: Large eddy simulations of turbulent reacting flows by assumed PDF methods. In: Ragab, S.A., Piomelli, U. (eds.) Engineering Applications of Large Eddy Simulations. FED, vol. 162, pp. 81–101. ASME, New York (1993) Google Scholar
  9. 9.
    Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5(6), 1282–1284 (1993) zbMATHCrossRefGoogle Scholar
  10. 10.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999) zbMATHCrossRefGoogle Scholar
  12. 12.
    James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123, 465–487 (2000) CrossRefGoogle Scholar
  13. 13.
    Garrick, S.C., Jaberi, F.A., Givi, P.: Large eddy simulation of scalar transport in a turbulent jet flow. In: Knight, D., Sakell, L. (eds.) Recent Advances in DNS and LES, Fluid Mechanics and its Applications, vol. 54, pp. 155–166. Kluwer Academic, Dordrecht (1999) Google Scholar
  14. 14.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14(3), 1196–1213 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Pope, S.B.: Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15(8), 2321–2337 (2003) CrossRefGoogle Scholar
  16. 16.
    Sheikhi, M.R.H., Givi, P., Pope, S.B.: Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 19(9), 095106 (2007) CrossRefGoogle Scholar
  17. 17.
    Sheikhi, M.R.H., Givi, P., Pope, S.B.: Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 21, 075102 (2009) CrossRefGoogle Scholar
  18. 18.
    Zhou, X.Y., Pereira, J.C.F.: Large eddy simulation (2D) of a reacting plane mixing layer using filtered density function. Flow Turbul. Combust. 64, 279–300 (2000) zbMATHCrossRefGoogle Scholar
  19. 19.
    Heinz, S.: On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation. Flow Turbul. Combust. 70(1–4), 153–181 (2003) zbMATHCrossRefGoogle Scholar
  20. 20.
    Cha, C.M., Troullet, P.: A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function. Phys. Fluids 15(6), 1496–1504 (2003) CrossRefGoogle Scholar
  21. 21.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., Pope, S.B.: Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D). Proc. Combust. Inst. 30, 549–556 (2005) CrossRefGoogle Scholar
  22. 22.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005) CrossRefGoogle Scholar
  23. 23.
    Raman, V., Pitsch, H.: Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combust. Flame 142(4), 329–347 (2005) CrossRefGoogle Scholar
  24. 24.
    van Vliet, E., Derksen, J.J., van den Akker, H.E.A.: Turbulent mixing in a tubular reactor: assessment of an FDF/LES approach. AIChE J. 51(3), 725–739 (2005) CrossRefGoogle Scholar
  25. 25.
    Carrara, M., DesJardin, P.: A filtered mass density function approach for modeling separated two-phase flows for LES I: mathematical formulation. Int. J. Multiphase Flow 32(3), 365–384 (2006) zbMATHCrossRefGoogle Scholar
  26. 26.
    Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145(1–2), 88–104 (2006) CrossRefGoogle Scholar
  27. 27.
    Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., Givi, P.: Developments in formulation and application of the filtered density function. Flow, Turbul. Combust. 78(1), 35–67 (2007) zbMATHCrossRefGoogle Scholar
  28. 28.
    Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor. Comput. Fluid Dyn. 21, 99–118 (2007) zbMATHCrossRefGoogle Scholar
  29. 29.
    Jones, W., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31(2), 1765–1771 (2007) CrossRefGoogle Scholar
  30. 30.
    Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170–187 (2007) CrossRefGoogle Scholar
  31. 31.
    James, S., Zhu, J., Anand, M.: Large eddy simulations of turbulent flames using the filtered density function model. Proc. Combust. Inst. 31(2), 1737–1745 (2007) CrossRefGoogle Scholar
  32. 32.
    Chen, Y.C.: Measurements of flame-front curvature based on Fourier transformation. Combust. Theor. Model. 11(3), 333–349 (2007) zbMATHCrossRefGoogle Scholar
  33. 33.
    McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys. 226, 947–993 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Raman, V., Pitsch, H.: A consistent LES/filtered density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31(2), 1711–1719 (2007) CrossRefGoogle Scholar
  35. 35.
    Afshari, A., Jaberi, F.A., Shih, T.I.P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008) CrossRefGoogle Scholar
  36. 36.
    Drozda, T.G., Wang, G., Sankaran, V., Mayo, J.R., Oefelein, J.C., Barlow, R.S.: Scalar filtered mass density functions in nonpremixed turbulent jet flames. Combust. Flame 155(1–2), 54–69 (2008) CrossRefGoogle Scholar
  37. 37.
    Madnia, C., Jaberi, F.A., Givi, P.: Large eddy simulation of heat and mass transport in turbulent flows. In: Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y. (eds.) Handbook of Numerical Heat Transfer, 2nd edn., Chap. 5, pp. 167–190. Wiley, New York (2006) Google Scholar
  38. 38.
    Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35, 335–362 (1999) CrossRefGoogle Scholar
  39. 39.
    O’Brien, E.E.: The probability density function (PDF) approach to reacting turbulent flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, Topics in Applied Physics, vol. 44, pp. 185–218. Springer, Heidelberg (1980) Google Scholar
  40. 40.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351–362 (1994) zbMATHCrossRefGoogle Scholar
  42. 42.
    Sheikhi, M.R.H.: Joint velocity-scalar filtered density function for large eddy simulation of turbulent reacting flows. Ph.D. Thesis, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA (2005) Google Scholar
  43. 43.
    Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, New York (1972) zbMATHGoogle Scholar
  44. 44.
    Risken, H.: The Fokker-Planck Equation, Methods of Solution and Applications. Springer, New York (1989) zbMATHGoogle Scholar
  45. 45.
    Grigoriu, M.: Applied Non-Gaussian Processes. Prentice-Hall, Englewood Cliffs (1995) zbMATHGoogle Scholar
  46. 46.
    Chen, J.Y.: An Eulerian PDF scheme for LES of nonpremixed turbulent combustion with second-order accurate mixture fraction. Combust. Theor. Model. 11(5), 675–695 (2007) zbMATHCrossRefGoogle Scholar
  47. 47.
    Sabelnikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72(1), 1–22 (2005) Google Scholar
  48. 48.
    Gustafson, K.E., Sethian, J.A. (eds.): Vortex Methods and Vortex Motion. SIAM, Philadelphia (1991) zbMATHGoogle Scholar
  49. 49.
    Itô, K.: On Stochastic Differential Equations, Memoirs of the American Mathematical Society, vol. 4. American Math. Society, Providence (1951) Google Scholar
  50. 50.
    Lu, T., Law, C.K.: An efficient reduced mechanism for methane oxidation with NO chemistry. In: Joing Meeting of the U.S. Sections of the Combustion Institute. University of California at San Diego, San Diego (2007) Google Scholar
  51. 51.
    Top 500 Supercomputer Sites: http://www.top500.org/ (2010)
  52. 52.
    Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. University of Minnesota, Minneapolis (1998) Google Scholar
  53. 53.
    Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance scientific simulations. Technical Report TR 00-018, University of Minnesota, Minneapolis, MN (1999) Google Scholar
  54. 54.
    Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R., Riesen, L.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: Proc. of 21st International Parallel and Distributed Processing Symposium (IPDPS’07). IEEE, New York (2007) Google Scholar
  55. 55.
    Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107(3), 223–226 (1996) CrossRefGoogle Scholar
  56. 56.
    Nooren, P.A., Versiuis, M., Van der Meer, T.H., Barlow, R.S., Frank, J.H.: Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B 71, 95–111 (2000) CrossRefGoogle Scholar
  57. 57.
    Sandia National Laboratories: Combustion Research Facility website. http://www.ca.sandia.gov/tnf (2010)
  58. 58.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135, 185–190 (2003) CrossRefGoogle Scholar
  59. 59.
    Mallampalli, H.P., Fletcher, T.H., Chen, J.Y.: Evaluation of CH4/NOx reduced mechanisms used for modeling lean premixed turbulent combustion of natural gas. J. Eng. Gas Turbul. Power 120, 703–712 (1998) CrossRefGoogle Scholar
  60. 60.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000) zbMATHCrossRefGoogle Scholar
  61. 61.
    Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V., Frenklach, M., Goldenberg, M., Smith, G.P., Crosley, D.R., Golden, D.M.: GRI-Mech 2.11—an optimized detailed chemical reaction mechanism for methane combustion and NO formation and reburning. Report GRI-97/0020, Gas Research Institute, Chicago, IL (1997) Google Scholar
  62. 62.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, pp. 483–485. ACM Press, New York (1967) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. L. Yılmaz
    • 1
    Email author
  • M. B. Nik
    • 2
  • M. R. H. Sheikhi
    • 3
  • P. A. Strakey
    • 4
  • P. Givi
    • 2
  1. 1.Center for Simulation and ModelingUniversity of PittsburghPittsburghUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  3. 3.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  4. 4.National Energy Technology LaboratoryMorgantownUSA

Personalised recommendations