Journal of Scientific Computing

, Volume 44, Issue 2, pp 136–155 | Cite as

On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods

Original Research

Abstract

We examine four nodal versions of tensor product discontinuous Galerkin spectral element approximations to systems of conservation laws for quadrilateral or hexahedral meshes. They arise from the two choices of Gauss or Gauss-Lobatto quadrature and integrate by parts once (I) or twice (II) formulations of the discontinuous Galerkin method. We show that the two formulations are in fact algebraically equivalent with either Gauss or Gauss-Lobatto quadratures when global polynomial interpolations are used to approximate the solutions and fluxes within the elements. Numerical experiments confirm the equivalence of the approximations and indicate that using Gauss quadrature with integration by parts once is the most efficient of the four approximations.

Keywords

Spectral element Discontinuous Galerkin Collocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999) MathSciNetGoogle Scholar
  2. 2.
    Black, K.: Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) MATHGoogle Scholar
  4. 4.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007) MATHGoogle Scholar
  5. 5.
    Castel, N., Cohen, G., Durufle, M.: Application of discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic. J. Comput. Acoust. 17(2), 175–196 (2009) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, Berlin (1976) MATHGoogle Scholar
  7. 7.
    Deng, S.: Numerical simulation of optical coupling and light propagation in coupled optical resonators with size disorder. Appl. Numer. Math. 57(5–7), 475–485 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deng, S.Z., Cai, W., Astratov, V.N.: Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Opt. Express 12(26), 6468–6480 (2004) CrossRefGoogle Scholar
  9. 9.
    Fagherazzi, S., Furbish, D.J., Rasetarinera, P., Hussaini, M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Adv. Water Resour. 27, 129–140 (2004) CrossRefGoogle Scholar
  10. 10.
    Fagherazzi, S., Rasetarinera, P., Hussaini, M.Y., Furbish, D.J.: Numerical solution of the dam-break problem with a discontinuous Galerkin method. J. Hydraul. Eng. 130(6), 532–539 (2004) CrossRefGoogle Scholar
  11. 11.
    Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181(2), 499–525 (2002) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Giraldo, F.X., Restelli, M.: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys. 227, 3849–3877 (2008) MATHMathSciNetGoogle Scholar
  13. 13.
    Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and their applications to mesh generation. Int. J. Numer. Methods Eng. Eng. 7, 461–477 (1973) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008) MATHCrossRefGoogle Scholar
  15. 15.
    Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191, 249–264 (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Discontinuous spectral element approximation of Maxwell’s Equations. In: B. Cockburn, G. Karniadakis, C.-W. Shu (eds.) Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer, New York (2000) Google Scholar
  18. 18.
    Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53, 105–122 (2002) MATHCrossRefGoogle Scholar
  19. 19.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009) MATHCrossRefGoogle Scholar
  20. 20.
    Lomtev, I., M Kirby, R., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rasetarinera, P., Hussaini, M.Y.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172, 718–738 (2001) MATHCrossRefGoogle Scholar
  22. 22.
    Rasetarinera, P., Kopriva, D.A., Hussaini, M.Y.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA J. 39(11), 2070–2075 (2001) CrossRefGoogle Scholar
  23. 23.
    Restelli, M., Giraldo, F.X.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 135(2), 250–258 (1997) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stanescu, D., Farassat, F., Y Hussaini, M.: Aircraft engine noise scattering—parallel discontinuous Galerkin spectral element method. Paper 2002-0800, AIAA (2002) Google Scholar
  26. 26.
    Stanescu, D., Hussaini, M.Y., Farassat, F.: Aircraft engine noise scattering by fuselage and wings: a computational approach. J. Sound Vib. 263(2), 319–333 (2003) CrossRefGoogle Scholar
  27. 27.
    Stanescu, D., Xu, J., Farassat, F., Hussaini, M.Y.: Computation of engine noise propagation and scattering off an aircraft. Aeroacoustics 1(4), 403–420 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsThe Florida State UniversityTallahasseeUSA
  2. 2.Institute for Aerodynamics and GasdynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations